Serie MMN-MRV/RV

\qquad
\qquad
\qquad
\qquad
Installation use and Maintenance Manual

INSTALLATION USE AND MAINTENANCE MANUAL Serie MV/V - MRV/RV

INDEX
1.0 GENERAL INFORMATION Pag. 3
1.1.1 EQUIPMENT IDENTIFICATION
1.1.2 MANUFACTURER'S LIABILITY
1.1.3 OPERATING LIMITS AND CONDITIONS
2.0 GEARBOXES'ATEX INFORMATION Pag. 5
2.1 EQUIPMENT IDENTIFICATION
2.2 CONFORMITY TO ATEX STANDARDS
2.3 BUILDING CHARACTERISTIC ATEX GEARBOXES
2.4 ATEX CERTIFICATE
3.0 STORAGE AND INSTALLATION Pag. 8
3.1 STORAGE AND WAREHOUSE
3.2 INSTALLATION
3.3 STARTING
4.0 MAINTENANCE Pag. 11
4.1.1 ROUTINE MAINTENANCE4.1.2 LUBRICANTS
4.1.3 CHECKING EFFICIENCY
5.0 PROBLEM DURING OPERATION Pag. 14
5.1 CAUSE AND REMEDY
6.0 MOUNTING POSITION Pag. 15
7.0 SPARES TABLES Pag. 25
8.0 SPARES TABLES Pag. 25
9.0 SPARES TABLES Pag. 25

1.0 GENERAL INFORMATION

1.1 EQUIPMENT IDENTIFICATION

a) Gearbox's description
b) Ratio
c) Product identification
d) Gearbox code
d) Date
e) Operator code

1.2 NOTE AND MANUFACTURER'S LIABILITY

The manufacturer declines all liability for cases of:

- use of the gearbox in violation of local laws on safety and accident prevention at work
- use as overgear
- modifications and/or tampering
- incorrect installations
- non-observance of instruction given in this manual
- incorrect power supply
- work done by unqualified or unsuitable person
- immersion in water or other liquids
- use in environment with different pressure than the atmospheric one
- use in aggressive or brackish environment

The safety also depends on the following elements:

- use of gearbox within its operatine limits
- diligently observance of the routine maintenance schedule
- exclusive use of original spare parts.
N.B. :The instructions given in this manual do not substitute, but summarise the provisions of applicable safety legislation.

1.3 OPERATING LIMITS AND CONDITIONS

- the gearbox must be installed as specified in the order and as given on the serial plate
- the permissible ambient temperature is: $-20^{\circ}<$ ta $<+40^{\circ} \mathrm{C}$
- the instructions given in the Use and Maintenance Manual, must be followed
- the use in a poorly lit area must provide for the use of additional lamps with applicable safety legislation
- the catalogue data refers to standard installation conditions: smaller spaces could cause an increase of temperature; in this case ask the manufacturer

For gearboxes ATEX it is also valid:

- The input speed must not exceed 1500 rpm
- Do not use the gearbox, if not authorized ATEX, in a potentially esplosive atmosphere

Failure to obtain said conditions voids the warranty of the manufacturer and in case of ATEX gearboxes, the certification too.

2.0 GEARBOXES' ATEX INFORMATIONS

2.1 EQUIPMENT IDENTIFICATION

a) Gearbox's description
b) Gear ratio
c) Mounting position
d) Gearbox code
e) Product identification
f) Date of manufacture
g) Maximum transmissible torque
h) Temperature class, or maximum surface temperature
i) Maximum surface temperature

2.2 CONFORMITY TO ATEX STANDARDS

The conformity declaration here reported, certify the Conformity to the ATEX directive $94 / 9 / \mathrm{CE}$; the validity of the declaration depends to the respect of the instruction specified in the Installation use and maintenance manual.

Equipment group : II
Calass: Gas 2G-Dust 2D
Zone : Gas 1 - Dust 21
Temperature under the following classification :
D-160 : the reduction unit may be installed in zones 21 and 22 (categories 2D and 3D), the surface temperature is guaranteed at less than $160^{\circ} \mathrm{C}$.

D-130 : the reduction unit may be installed in zones 21 and 22 (categories 2D and 3D), the surface temperature is guaranteed at less than $130^{\circ} \mathrm{C}$.

G-T3 : the reduction unit may be installed in zones 1 and 2 (categories 2G and 3G), the surface temperature is guaranteed at less than $200^{\circ} \mathrm{C}$ (class T3)

G-T4 : the reduction unit may be installed in zones 1 and 2 (categories 2 G and 3 G), the surface temperature is guaranteed at less than $135^{\circ} \mathrm{C}$ (class T4)

The applicability of these options is subjet to the type of reduction unit in question and is given in the selection table.

2.3 BUILDING CHARACTERISTIC ATEX GEARBOXES

- Viton seal rings
- Twin-lip seals on slow shaft
- No plastic components
- Marking on rating plate stating protection category and type
- Presence of irreversible temperature-indicators at strategic points
- Thread locker on all external bolts
- Vent caps with anti-intrusion valve
- Only uses synthetic lubricants (Polyglycol or Polyalkalene Glicol family)
- Seal in zones with moving couplings and external threaded seats
- Products and components suitable for use at temperatures above envisaged operating temperatures
- No sliding metal components outside the reduction unit

2.4 ATEX CERTIFICATE

EC-Certificate
 No. EX9 040753496001

Holder of Certificate:
G.M. S.r.1.

Ghirri Motoriduttor
41043 Formigine (MO)
tualy

Name of Object:
Non-electric devic
Model(s):
Ex
Worm Gearboxes Type: MRV

Description of Object: One set of technical documentation.

This EC-Certificate is isisue systems in the file tor the ition is corred and comp equipment and protective storage of the documentation equipmens the receipt and
$G \mathrm{MBH}$.
overleal.

Test report no:

Date. $2004-07.1$.
TUV PROOUCT SERVICE GMBH is Nounded tor use in potition
equipment and protective joum
publication

TÛV PRODUCT SERVICE GMBH - Zertifizierstelle GOV Sûddeutschland

3.0 STORAGE AND INSTALLATION

3.1 STORAGE AND WAREHOUSE

The reducers can be stored in an inoperative condition (normal industrial environment) without having to take any special precautions for a period of about 6 months; if they remain inoperative for a longer period, the surface protective devices on the rotating parts should be reset and the lubricant topped up completely.

At the end of the storage, before the reducer is put back into operation do the following:

- The output shafts and external surfaces must be thoroughly cleaned of all rustproofing product or other impurities

- (n.b. : in case of ATEX gearbox, the previous disposition has to be done outside the explosion hazard area)
- the solvent must not touch the seal rings as this can damage them and render them ineffective.
- if the oil or protective material used during storage is not compatible with the oil used during the machine's operation, the interior of the unit must be thoroughly cleaned before filling with the operating oil.

3.2 INSTALLATION

It's very important that the following standards be met when installing the gear reducer and/or gearmotor:

- Make sure that the gear reducer is aligned with the motor and with the operating machine.
- Ensure that the reducer is secured firmly to avoid any vibration.
- The elements (cable or solid) must be mounted on the shafts in a workmanlike manner, without forcing, to ensure that the couplings are sound and thereby avoiding any damage to the bearings or other parts of the reducer. The elements in question must be machined to ISO H7 tolerance levels.
- If the reducer is painted, the rotating parts, control devices (oil indicator lamps) and particularly the oil seals, should be protected to ensure that they are kept in good working order.
- Before putting the machine into operation, check that the position of the oil level indicator and the drain plug are appropriate in relation to the position in which the reducer has been mounted and that there is adequate oil to lubricate the internal working parts.
- If the machine is installed in the open air or in environments subjected to particularly harsh conditions, a rust-proofing paint should be used and water-repellent grease should be applied to the rotating parts.
- When the reducer is supplied without motor, check that the shaft and motor flange tolerances satisfy IEC Standards. Clean off any traces of dirt or paint from the shaft, centring pin and flange plate. Couple the elements without forcing them in any way.

In case of ATEX gearbox, must be add the following disposition:

Category 2D gear units must be installed in compliance with the provisions of standards EN 1127-1 EN 50281-2.
All maintenance, assembly and disassembly work must be done outside the explosion hazard area by trained personnel.

Install guards to prevent the hazardous accumulation of dust and liquids on the seals.
Only install the gear unit in the motor execution and mounting position specified on the order.

Do not connect any object with electrical resistance greater than 10^{9} ohm to the gear unit.

Check that all accessory components (cables, cable glands, etc.) comply with ATEX directive.

3.3 STARTING

The gearbox has been tested by the manufacturer.
Any way during the starting operation it is necessary to respect following instructions:

- The machine incorporating the gear unit must be comply with the provisions of the Machinery Directive 98/37/CE and any other applicable safety legislation.
- The gear unit's mounting position in the installation must correspond to that prescribed and indicated on the nameplate.
- The motor power supply must correspond to that indicated on the motor within the tollerances indicated in the regulations in force
- The oil level must be as indicated in the catalogue and oil leaks should not be present
- The starting must be in a gradual way avoiding to put the nominal torque immediately on the gear unit
- The unit musn't run noisily or with excessive vibration
- The environment temperature must be within the allowed range

In case of ATEX gearboxes it must be add following disposition:

- The machine incorporating the gearbox must comply with the provisions of the Directive 94/9/CE.
- Check that assembly is not carried out in a potentially explosive atmosphere.
- Check that there is no dust deposits thicker than 5 mm on the gearbox. Anyway the gearbox must be clean before starting.
- Check that during operation, the gearbox is sufficiently ventilated and that it is not subject to radiation from external heat sources.
- Check that the maximum operating temperature after 3 hours of starting at full load is not higher than the standard temperature class of the gearbox. In case stop the gearbox at once and contact the G.M. technical service.

4.0 MAINTENANCE

4.1 ROUTINE MAINTENANCE

Generally the following rules should be followed: periodically check that the exterior of the assembly is clean, periodically check of eventual lubricant's leaks, periodic replacement of lubricant if gearbox is not lubricated for life.

Periodic check provides too:

- check the breather hole in the plug is clean(when present)
- check through the level plugs the correct quantity of lubricant, if it is necessary, procede with refilling of lubricant of the same brand or anyway compatible with that of the gearbox.

In case of ATEX gearbox is indicated the following frequency :

Frequency	Component	Type of work	Operation
5000 hours	Seals and gaskets gearbox	Check wear or ageing	If it is necessary replacing of the oil seals ring
1000 hours	Lubricant	Check oil level and check for leaks	Maintenance or refilling
1000 hours	Hole plug	Check hole's cleaning	Maintenance
1000 hours of operation or every 3months	Surface	Check that there is no dust deposits thicker than 5 mm	Periodic cleaning
1000 hours of operation or every 3months	Surface	Check the surface temperature	Check of the temperature indicator
Every 5000 hours of operation	Gearbox	General repair of the gearbox (if it is not necessary in advance because of anomalies)	Replacing of bearings and mechanical components which are weared

	Synthetic Oli	Mineral Oil
AGIP	TELIUM OIL VSF 320 (*)	BLASIA 220
SHELL	Tivela OIL SC 320	OMALA 220
KLUBER	Syntheso D 220 EP	Lamora 220
FINA	Giran S 320	Giran 220
ESSO	Glycolube Range 220	Spartan EP 220

In case of ATEX gearbox, greases and oils compatibles are:

Greases

For greased gear trains
Shell TVX Compound B
Shell Tivela GL 00
To facilitate coupling of cylindrical parts
Kluberpaste 46 MR 401
For greasing contact seals
ITP Fluorocarbon gel 880

Oils(as alternatives to ENI Telium oil VSF 320)

- Shell : Tivela Oil SC320
- Aral : Degol GS 320
- Kluber : Klubersynth GH 6320
- Total : Carter SY 320
- Mobil : Glygoyle HE 320

4.2 4.3 CHECKING EFFICIENCY

Remove dust deposits from the gear unit.
Check the noise and the presence of eventual vibration.
Check the power absorption of voltage is within limit indicated in the name plate. Check for lubricant leaks.

In case of ATEX gearboxes :

The following activities should be integrated in the internal procedure.

5.0 PROBLEM DURING OPERATION

The following table shows a series of problems with a description of possible remedies.

However the information given is for reference only, as all the drives manufacturer by G.M. are thoroughly tested and checked before shipment.

Tampering with the assembly without prior authorization from G.M. immediately invalidates the warrenty and makes it impossible to ascertain the causes of a defect or malfunction.

problem	cause	action
The motor does not start.	Problems with power supply. Defective motor.Wrong size of motor.	Replace electric motor and/or check power supply.
Current absorbed by the motor is greater than shown on the data plate.	Wrong size of motor.	Check the application.
Temperature of the motor housing is very high.	Wrong size of motor /defective motor.	Check the application.
Temperature of the motor housing is very high.	Wrong size of reduction unit. Mounting position does not comply with the order.	Check the application and/or mounting position complies with the order.
Oil leak from oil seal.	Detective oil seal.Oil seal damaged during shipment. Defective motor shaft.	Replace the oil seal, return the assembly to G.M. if motor shaft is damaged.
Oil leak from joint.	Flat gasket or O-ring damaged.	Return the assembly to G.M.
Intermittent noise from the gears.	Dents in the gear wheels.	Return the assembly to G.M.(if the noise has effect on the application).
Noise(whine)from the drive assembly.	Bearings incorrectly adjusted. Gears with mesh errors. Insufficient lubricant.	Check of lubricant and/or return the assembly to G.M.
Electric motor vibrates.	Measurement of the assembly coupling.	Replace electric motor and/or check geometric tolerance of flange on electric motor.
The main shaft rotates the wrong way.	Incorrect connection of the electric motor.	Swap phases.

6.0 SPARES TABLE

GEARED MOTOR REDUCERS
 MRV/RV

[^0]12

\qquad
\qquad
\qquad
MRV/RV OUTPUT SHAFTS

 \qquad
 0104001
0104002
0104003
0104004
0104006
0104007
0104008
0104009
0104010
0104011
0104012
0104015
04015.10
0104016
0104028
0104029
30203
32007
6010
30206
6010
-
$30 \times 45 \times 8$
$35 \times 47 \times 8$
$50 \times 70 \times 10$
-
$50 \times 70 \times 10$
$M 8 \times 25$
$M 6 \times 20$
$M 6 \times 20$
$D n 6$
$D n 6$
$8 \times 7 \times 35$
$M 8 \times 22$
$D n 8$

$M 6 \times 20$ | 0103001 | |
| ---: | ---: |
| 0103002 | 1 |
| 0103003 | 1 |
| 0103004 | 1 |
| 0103006 | 1 |
| 0103007 | 1 |
0103008	1
0103010	1
0103011	1
0103012	1
0103015	1
0103015.10	1
0103016	1
0103028	1
0103029	2
30205	1
51107	1
16009	1
30205	1
16009	1
152	1
$25 \times 35 \times 8$	1
$35 \times 45 \times 8$	1
$45 \times 65 \times 10$	1
52×7	1
$45 \times 65 \times 10$	1
$\mathrm{M} 8 \times 25$	4
$\mathrm{M} 6 \times 18$	8
$\mathrm{M} 6 \times 18$	8
Dn 6	8
Dn 6	8
$6 \times 6 \times 30$	1
-	-
-	-
$M 6 \times 18$	8

$\checkmark \bullet \infty \infty \infty \infty \sim \omega \odot \infty$

\quad Denomination
Casing
Lateral cover
Output flange
Pendular flange
Motor flange
Worm shaft PAM
Worm wheel
Closed cover
Feet
Worm shaft RV
Cover
Output shaft
Double output shaft
Torque arm
Gasket
Gasket
Bearing 1 on worm shaft
Bearing 1 on worm shaft
Bearing 2 on worm shaft
Bearing 1 on worm wheel
Bearing 2 on worm wheel
Seeger UNI 7437
Oil seal ring DIN 3760
Oil seal ring DIN 3760
Oil seal ring DIN 3760
Cover RCA
Oil seal ring DIN 3760
Screw DIN EN 24014
Screw DIN EN 24014
Screw DIN EN 24014
Washer DIN 128
Washer DIN 128
Key DIN 6885
Screw DIN EN 24014
Washer DIN 128
Screw DIN EN 24014

๗்

Prog.

For version realized according to ATEX specification, it will follow the following:
For version realized according to ATEX specification, it will follow the following:
Installation of the special ATEX plate
Installation of irreversible temperature indicators
Installation of irreversible temperature indicators
Using of metal plugs
Using of oil seal rings in Viton
ATEX certification is available for the following sizes: $40,50,60,70$.
Legend:
Prog. Project number
Pos. Component position
$\begin{array}{ll}\text { P/C } & \text { Product component [P] or commercial [C] } \\ \text { Q } & \text { Quantity }\end{array}$

8.0 SPARES TABLE

GEARED MOTOR REDUCERS
 MV/V

m

Casing Output flange Pendular flange

 Motor flange Worm shaft PAM Worm shaft VOutput shaft
Spacer 1 on worm shaft Bearing 1 on worm shaft
Bearing 2 on worm shaft Bearing 1 on worm wheel Bearing 2 on worm wheel
Seeger UNI 7437 Seeger UNI 7437 Oil seal ring DIN 3760 Oil seal ring DIN 3760

Cover RCA Oil seal ring DIN 3760
Screw DIN EN ISO 4762 Screw DIN 7984 (ribassata)
Key DIN 6885 Key DIN 6885
Screw DIN EN IS Screw DIN EN ISO 4762
Key DIN 6885 Key DIN 6885

은

		1	$\begin{array}{r} \text { M } 6 \times 14 \\ 3256 \\ 3 / 8 " \text { Gas } \\ 3 / 8^{\prime \prime} \text { Gas } \end{array}$	$\begin{aligned} & 4 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & - \\ & \hline- \\ & \hline \end{aligned}$	$\begin{array}{r} \text { M8x16 } \\ 4312 \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \end{array}$	4 1 1 1 	$\begin{array}{r} \text { M8x16 } \\ 4400 \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \end{array}$	8 1 1 1 	$\begin{array}{r} \text { M8×20 } \\ 4487 \\ 3 / 8 \text { Gas } \\ 3 / 8^{\prime \prime} \text { Gas } \end{array}$	8 1 1 1	$\begin{array}{r} \text { M10x22 } \\ 4600 \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \\ 3 / 8 \text { Gas } \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \end{array}$	8 1 1 1 1 1	$\begin{array}{r} \text { M10x22 } \\ 4750 \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \\ 3 / 8 " \text { Gas } \end{array}$	1 1 1
25 Q	30	Q	40	Q	50		63		75		90		110	

UUOUUUUO
U

[^1]

\qquad
\qquad Via Prampolini, $6-41043$ Formigine (MO), Italy
Tel.059.55.82.10 - Fax 059.57.26.56
web-site: www.ghirri.it - e-maill info@ghirri.it cu-site www.g ini.i-e-mali into@ghirri.it

[^0]: MRV/RV WITH OUTPUT FLANGE
 n° compl. 01001.3
 13/03/05

[^1]: Installed together with seeger UNI7437 I 42 Installed together with seeger UNI7437 I 55
 For version MV it's installed one bearing 6003 together with seeger UNI7435 E 17
 For version realized according to ATEX specification, it will follow the following: Installation of the special ATEX plate

 Installation of irreversible temperature indicators
 Using of special plugs
 Using of oil seal rings in
 Legend:
 Prog. Project number
 Prog. Project Component position
 P/C $\begin{array}{ll}\text { Qroduct component [P] or commercial [C] } \\ \text { Quantity }\end{array}$

 * Verify the below notes

