

PRECISION MOTION CONTROL

Application & Selection Guide

The most advanced technology in linear and rotary motion control.

Gears **1** Precision Ring Accessories **2** Drive System

31

RPS System Life

43

Harmonic Gearhead

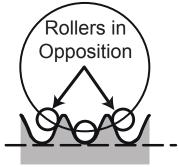
51

APPENDIX Definitions & Notes

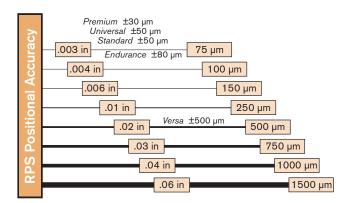
63

RPS System

5


Racks

9


A New Standard For Precision

The Nexen Roller Pinion System (RPS) revolutionizes linear and rotary motion control possibilities. Giving a fresh face to traditional rack and pinion systems, the RPS overcomes the troublesome limitations of conventional drive systems and offers unmatched performance. Across industries as varied as laser cutting and mining, users will benefit from the accuracy and 99% efficiency of this new technology.

The incredible performance of the RPS starts with a pinion consisting of bearing-supported rollers that engage a unique tooth profile. Two or more rollers engage the teeth in opposition at all times to eliminate backlash. The pinion rollers glide easily along a tangent path and roll smoothly down the tooth face for quiet, low-friction operation.

Constant Positional Accuracy Regardless of the Distance Traveled



Every aspect of the RPS system is designed for reliable, easy operation. With customizations available to meet the specific needs of any application and multiple material finishes, the RPS system can go anywhere. Even installation is worry-free with a simple alignment tool to ensure positional accuracy over multiple sections of rack.

Dependable Performance. Every Time.

The Nexen RPS System Always Delivers.

THE NEXEN ADVANTAGE

Overcoming Common Problems Found in Traditional Drive Systems

INDUSTRY PROBLEMS	Ball Screws	Traditional Rack/Gear & Pinion Systems	Belt Drives	Chain Drives	Linear Motors Direct Rotary Stages Direct Drive Motors	ROLLER PINION SYSTEMS
Low Accuracy						High Positional Accuracy
Backlash / Vibrations		۲				Near-Zero Backlash
High Cost		۰			۲	Economical, Efficient Components
Dirty Operation		•				No Dust Emissions
High Maintenance		۲			۲	Little to No Maintenance
Low Load Capacity					۲	High Load Capacity
Noisy		۲				Quiet: pinion rollers glide smoothly along teeth
Low Speed		۲				High Speeds (up to 11 m/sec)
Magnetic Field					۲	No magnetic field
High Wear/ Low Life		۲				Long Life (up to 36 million meters)
Limited System Length/Size						Custom Rack Sizes & Modular Components

Medical Imaging Measurement Clean Rooms Material Handling Vacuum Environments Welding

ne><en.

RPS SYSTEM

Nexen offers both premium and value roller pinions with rack options to fit any application. The following tables show specifications for the various rack and pinion configurations.

Rack & Pinion Model Comparisons	6
Rack Thrust Capacity	7
Pinion Torque	7
Accuracy & Repeatability	7
Rack Model Attributes	7

RPS System Configurations & Comparisons

Nexen features six different rack models and two pinion types, ensuring the perfect solution for any application. First compare the rack attributes to determine which rack model best meets your needs. Then compare the specifications of both the premium and value pinions to select the ideal RPS system configuration.

Rack Models Available

	As the name <i>premium</i> suggests, this is Nexen's top of the line model featuring market leading accuracy and a hard chrome coating for corrosion resistance. A perfect choice for any precision motion need.									
PREMIUM RACK	Very High Precision/Accuracy Suitable for Dirty Environments Lubrication Free High Load Capacity High Corrosion Resistance									
	Precision Assembly Equipment • Machine Tool/CNC Mills • High Precision Gantry • Robotics									
	The Standard Rack offers similar performance to the Premium model without the corrosion resistant coating. With slightly lower accuracy, the standard model still delivers dependable performance in many the same types of applications. A great, cost-saving choice when corrosion resistance is not required.									
STANDARD RACK	High Precision/Accuracy High Load Capacity No Corrosion Resistance Lower Cost than Premium Rack									
	Precision Assembly Equipment • Machine Tool/CNC Mills • High Precision Gantry • Robotics									
	This is the work horse of the product line, combining both high load capacity and good corrosion resistance.									
ENDURANCE RACK	High Load Capacity Good Accuracy (not high precision) Medium Corrosion Resistance									
	General Assembly Equipment • Machine Tool • Gantry Systems									
	With better accuracy than Endurance Racks, the Universal Rack is a great option for lower load applications when corrosion resistance is not required.									
UNIVERSAL RACK	High Accuracy No Corrosion Resistance Medium Load Capacity									
	Material Handling Equipment • Gantry Systems • Packaging Equipment • General Motion Control									
	Get all the features of the Universal Rack with the added benefits of corrosion resistant stainless steel.									
UNIVERSAL STAINLESS RACK	High Accuracy Wet or Dirty Environments Medium Load Capacity Very High Corrosion Resistance									
	Material Handling Equipment • Gantry Systems • Packaging Equipment • General Motion Control									
	Made from thermoplastic, this rack can go places no other racks can go. It's wide range of applications make it a great fit for general motion control applications looking for the advantages of the RPS in a conventional accuracy version.									
VERSA RACK	 Extremely High Corrosion Resistance Light Load Motion Control High Durability Basic Actuator (similar to cylinder/belt) 									

Pinion Models Available

PREMIUM PINION	This long time standard at Nexen offers the best precision on the market. Use with any RPS rack for unbeatable performance. • Very High Precision/Accuracy • High Torque Capacity • Great Performance in Any Application
VALUE PINION	A great fit for unique applications, Nexen offers the Value pinion to fit applications looking for the general features of Nexen's RPS in a conventional accuracy version. • Lighter Load, General Accuracy Applications • Harsh Environments • Available in Sizes 16, 20 & 25

RPS System Specifications

Tu		Traon 1	must	Capac												
RPS Size		Prer	Premium Rack Standard Rack			Endu	Endurance Rack		Universal & Universal Stainless Racks			Versa Rack				
		Accel.	Avg.	Static	Accel.	Avg.	Static	Accel.	Avg.	Static	Accel.	Avg.	Static	Accel.	Avg.	Static
	10	250	250	380	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
\leq	12	500	500	750	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N	16	2400	1000	2400	2400	1000	2400	1500	1000	2000	750	750	750	500	500	500
N P	20	2900	1500	3000	2900	1500	3000	2250	1500	3000	1125	1125	1125	750	750	750
1	25	4000	2200	4400	4000	2200	4400	3300	2200	4400	1650	1650	1650	1100	1100	1100
PREMIUM PINION	32	6300	3600	7200	6300	3600	7200	5400	3600	7200	2700	2700	2700	NA	NA	NA
P	40	6000	6000	12000	6000	6000	12000	6000	6000	12000	4500	4500	4500	NA	NA	NA
	4014	14000	14000	21000	14000	14000	21000	14000	14000	21000	10500	10500	10500	NA	NA	NA
Ш	2 16								500							
VALUE	20	750														
20	25								1100							

Table 1 Rack Thrust Capacity (N)

Table 2Pinion Torque (Nm)

RPS Size	Peak Pini	on Torque	Maximum Average Pinion Torque for Full Life				
	Premium Pinion	Value Pinion	Premium Pinion	Value Pinion			
10	4.0	NA	4.0	NA			
12	9.5	NA	9.5	NA			
16	61.1	12.8	33.7	12.8			
20	92.3	23.9	52.5	23.9			
25	159.2	43.8	89.5	43.8			
32	385.0	NA	218.7	NA			
40	458.4	NA	458.4	NA			
4014	1247.8	NA	1247.8	NA			

Table 3 Accuracy & Repeatability

PINION TYPE	RACK MODEL	Premium Rack	Standard Rack	Endurance Rack	Universal Rack & Universal Stainless	Versa Rack
Deservision Distant	Accuracy ± µm	30	50	80	50	500
Premium Pinion	Repeatability ± µm	5	10	20	10	20
Value Dinien	Accuracy * ± µm	110	130	160	130	580
Value Pinion	Repeatability * ± µm	5	10	20	10	20

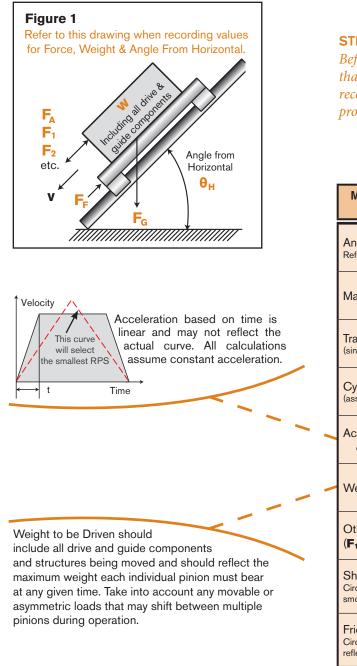
Table 4 Rack Model Attributes (NOT AFFECTED BY PINION CHOICE)

RACK MODEL	Premium Rack	Standard Rack	Endurance Rack	Universal Rack	Universal Stainless	Versa Rack	
Backlash* µm			0				
Corrosion Resistant Surface Treatment	Hard Chrome	None	Nitrided	None	None	Plastic	
Corrosion Resistance Rating	High	None	Medium	None	Very High	Extremely High	
Lubrication Free Operation	Yes up to 30 m/min	No	Yes up to 30 m/min	No	No	Yes up to max speed	
Noise Level dB	up to 75 (Speed Dependent)						
Temperature Range °C	-5 to 40						

* Specifications listed for the Value Pinion are "out-of-box" ratings. Over time, these specifications are affected by operating torque and speed.

NOTE: Refer to the System Life section for Load Life Comparison. See the Definitions section at the end of this catalog for details on these attributes.

RPS RACKS


Nexen offers modular & custom rack sizes for unlimited system length. Choose from six rack models for a perfect fit in any application.

Rack Selection Process	10
Application Data	10
Calculations	11
Specifications	12
Dimensional Drawing	13
Product Numbers	13

Linear Rack Selection Process

Nexen offers a large range of rack sizes and materials, so you can find the perfect components for your application. Take advantage of the following guide designed to make selecting the right components for your system simple. If you don't find what you need, contact Nexen Group.

STEP 1: GATHER APPLICATION DATA

Before you begin calculations, there are nine key measurements that you will need from your application. Collect the data and record it in the chart below. With this data available you can proceed on to the calculations on the following page.

Measurements Required for RPS Selection	Customer Data (record your values below)	Sample Data
Angle from Horizontal (θ_H) Refer to Figure 1.	o	60°
Maximum Velocity (V_{max)}	m/s	0.5 m/s
Travel Distance (L) (single direction move)	m	5.4 m
Cycles Per Day (N_{day}) (assumes single direction move)		1000
Acceleration Time (t _A) or Known Acceleration	seconds m/s²	0.5 s
^r Weight to be Driven (₩)	kgf	150.0 kgf
Other Forces (F ₁), (F ₂) etc.	Ν	0 N
Shock Factor (K) Circle the value that best reflects the smoothness of your application.	Shockless Operation1.0Normal Operation1.2Operation with Impact1.5Operation with High Impact2.5	1.2
Frictional Coefficient (µ) Circle the value that best reflects your application.	Profile Guide Rail0.005Ball Bearing Guide Rail0.02Polymer Bushing Guide0.1Bronze Bushing Guide0.2	0.01

Other Key Application Information

Application Description:				
Environmental Conditions:	Typical Industrial	High Humidity	High Temperature	High Dust
Positional Accuracy Requirements:				

STEP 2: CALCULATING RPS REQUIREMENTS

Rack selection is based on the load capacity required by your application. Using the information gathered on the preceding page, perform the following calculations to determine the Total Force of the Load. Use the space provided to record your calculations. (The sample calculations assume a single pinion driving an axis. Use the Sample Data from the chart on the preceding page.)

							Load Mass
LOAD MASS: $\mathbf{M} = \mathbf{W}$ Use the total Weight to be Driven as your Load Mass value.						M =	kg
Sample: <i>M</i> = 150.0 kgf = 150 kg							DAD ACCELERATION
LOAD ACCELERATION: $\mathbf{A} = \mathbf{V}_{max} \div \mathbf{t}_{\mathbf{A}}$ A known acceleration from a servo drive provider is preferred if a	vailable.	A =	m/s	÷	s	A =	m/s ²
Sample: $A = 0.5 \text{ m/s} \div 0.5 \text{ s} = 1.0 \text{ m/s}^2$						Force Du	ie to Load Acceleration
Force Due to Load Acceleration: $\mathbf{F}_{\mathbf{A}} = \mathbf{M} \cdot \mathbf{A}$		F _A =	kg	•	m/s²	$\mathbf{F}_{\mathbf{A}} =$	N
Sample: $\mathbf{F}_{\mathbf{A}} = 150 \text{ kg} \cdot 1.0 \text{ m/s}^2 = 150.0 \text{ N}$						For	CE DUE TO GRAVITY
Force Due to Gravity: $F_{g} = \mathbf{M} \cdot \mathbf{g} \cdot \sin(\theta_{H})$	$F_{G} =$	kg •	9.81 m/s²	• sin()	$\mathbf{F}_{\mathbf{G}} =$	N
Sample: F _G = 150 kg • 9.81 m/s ² • sin(60°) = 1274.4 N						For	ce Due to Friction
Force Due to Friction: $\mathbf{F}_{F} = \mathbf{M} \cdot \mathbf{\mu} \cdot \mathbf{g} \cdot \mathbf{cos}(\theta_{H}) \qquad \qquad \mathbf{F}_{F} = \mathbf{M} \cdot \mathbf{\mu} \cdot \mathbf{g} \cdot \mathbf{cos}(\theta_{H})$	kg	•	9.81 m/s²	cos()	$\mathbf{F}_{\mathbf{F}} =$	N
Sample: $\mathbf{F}_{\mathbf{F}} = 150 \text{ kg} \cdot 0.01 \cdot 9.81 \text{ m/s}^2 \cdot \cos(60^\circ) = 7.4 \text{ N}$	I						Sum of Forces
Sum of Forces: $F_s = F_A + F_G + F_F + F_1 + F_2 + \dots etc$ $F_s =$	N <mark>+</mark>	N <mark>+</mark>	N <mark>+</mark>	N +	N	$F_s =$	N
Sample: F _s = 150.0 N + 1274.4 N + 7.4 N = 1431.8 N						Total Fo	RCE WITH SHOCK FACTOR
Total Force with Shock Factor: $F_{T} = F_{s} \cdot K$		F,	. =	N •		$F_T =$	N
Sample: F _T = 1431.8 N • 1.2 = 1718.2 N						-	

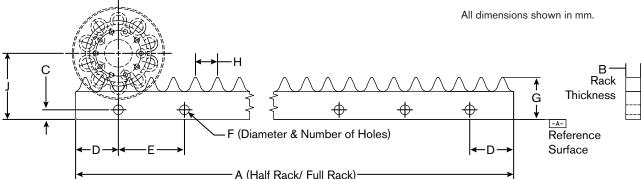
STEP 3: SELECTING A RACK MODEL

Use Table 4 in the RPS System section to review the six different rack models and determine the model best suited for your application.

STEP 4: SELECTING RACK SIZE

Locate your chosen rack model in Table 1 in the RPS System section and determine the rack size with enough thrust capacity to handle the Total Force with Shock Factor calculated above for your application.

STEP 5: EVALUATE LIFE AND VERIFY YOUR SYSTEM SPECIFICATIONS


With the rack model and size selections, evaluate expected life in the **System Life** section and review the Common Rack Specifications (Table 5 in the Rack Section) to be sure that the rack you have selected will meet all of your application requirements.

RACK MODEL
RACK SIZE
RACK PRODUCT NUMBER

										_				_		
Attribute		Size	RPS10	RPS12	RP	S16	RP	S20	RP	S25	RP	S32	RP	S40	RPS	4014
Max Pres	sure Angle	o	26.4	26.4	27.9		2	26.4		26.4		6.0	26.0		26.0	
Avg Pressure Angle °		21.9	21.9	23.4		21.9		2	1.9	22	2.7	2	1.3	2	0.9	
Module mm		3.0	3.6	4.8		6.0		7.5		9	.5	1:	2.0	12.0		
Max	All Metal Max Racks m		4	8		4		5		8	1	1		6		6
Speed * Vorca		m/s	NA	NA		2		2	2		NA		NA		NA	
Rack Too	Rack Tooth Pitch		10	12	1	16	2	20	2	25	32		40		40	
Rack Heig	ght	mm	27	27	3	0.5	4	2.0	4	3.0	5	7.0	7:	2.6	6	9.0
Rack Wid	th	mm	5.7	5.7	1	1.5	15.5 18.5		3.5	24.5		31.5		42.0		
Rack Sec	tion Size		Half	Half	Half	Full	Half	Full	Half	Full	Half	Full	Half	Full	Half	Full
Rack Length		mm	480	480	512	992	500	1000	500	1000	512	992	520	1000	520	1000
Number of Rack Teeth			48	40	32	62	25	50	20	40	16	31	13	25	13	25
	All Metal Racks	kg	0.5	0.6	1.1	2.1	2.1	4.1	2.7	5.4	4.2	8.2	6.9	13.2	8.8	17.0
Weight	Versa Rack	kg	NA	NA	0.2	0.4	0.4	0.8	0.5	1.0	N	IA	Ν	IA	1	١A

Table 5 Common Rack Specifications

* The maximum rated speed of a RPS system is equal to the lowest rating of either the pinion or the rack.

	← A (Half Rack/ Full Rack) →													
	A	1	В	С	D	E	F			G	н	J		
	Rack Length		Rack	Hole Hole From		Hole		Mounting Ho	oles	Rack	Tooth	Axis to		
RPS Size	Half	Full	Thickness	Height	End	Spacing	Ø	# Half Rack	# Full Rack	Height	Pitch	Base		
RPS10	480	NA	5.7	7	29.8	60	5.5	8	NA	27.0	10	37.5		
RPS12	480	NA	5.7	7	29.8	60	5.5	8	NA	27.0	12	40		
RPS16	512	992	11.5	7	16	96	7	6	11	30.5	16	48		
RPS20	500	1000	15.5	10	50	100	9	5	10	42.0	20	64		
RPS25	500	1000	18.5	12	50	100	11	5	10	48.0	25	75		
RPS32	512	992	24.5	14	16	96	14	6	11	57.0	32	102		
RPS40	520	1000	31.5	16	80	120	18	4	8	72.6	40	129		
RPS4014	520	1000	42.0	16	60	80	18	6	12	69.0	40	140		

See drawings or CAD models on Nexen's website for additional dimensions and tolerances.

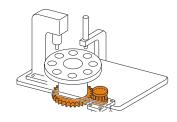
Rack Product Numbers

RPS Size	Rac	< Length	Premium	Standard	Endurance	Universal	Universal Uncoated Stainless	Universal Coated Stainless	Versa		
10	Half	480 mm	966768	NA	NA	NA	Contact Nexen	Contact Nexen	NA		
10	Align	ment Tool				966507					
12	Half 480 mm		966769	NA	NA	NA	Contact Nexen	Contact Nexen	NA		
12	Alignm	ent Tool				966508					
	Half	512 mm	966652	966602	Contact Nexen	966801	966760	966742	Contact Nexen		
16	Full 992 mm		966651	966601	966850	966800	966813	966741	966860		
	Alignm	ent Tool				966503					
	Half	500 mm	966662	966612	Contact Nexen	966803	Contact Nexen	Contact Nexen	Contact Nexen		
20	Full	Full 1000 mm 96666		966611	966851	966802	966625	966619	966861		
	Alignment Tool										
	Half	500 mm	966672	966622	Contact Nexen	966805	Contact Nexen	Contact Nexen	Contact Nexen		
25	Full 1000 mm 96		966671	966621	966852	966804	966814	966755	966862		
	Alignment Tool					966523					
	Half	512 mm	966682 966632 0		Contact Nexen 966807		Contact Nexen	Contact Nexen	NA		
32	Full	992 mm	966681	966631	966853	966806	966812	Contact Nexen	NA		
	Alignm	ent Tool				966533					
	Half	520 mm	966692	966642	Contact Nexen	966809	Contact Nexen	Contact Nexen	NA		
40	Full	1000 mm	966691	966641	966854	966808	966815	Contact Nexen	NA		
	Alignm	ent Tool				966543					
	Half	520 mm	966695	966647	Contact Nexen	966811	Contact Nexen	Contact Nexen	NA		
4014	Full	1000 mm	966694	966646	966855	966810	966816	Contact Nexen	NA		
	Alignm	ent Tool		966543							
Ra	ck Grea	se				853901					

RPG GEARS

Nexen offers the RPG Gears as solid rings up to 1.7 m in diameter. Segmented rings or arcs can also be combined to create your own custom rotary drive system.

Gear Selection Process	16
Application Data	16
Calculations	17
Specifications	18
Dimensional Drawings	19
Product Numbers	19


Rotary Gear Selection Process

Nexen offers both gears and individual arc segments for unlimited possibilities in your machine design. Take advantage of the following guide designed to make selecting the right components for your system simple. If you don't find what you need, contact Nexen Group about a custom design.

STEP 1: GATHER APPLICATION DATA

Before you begin calculations, there are key measurements that you will need from your application. Collect the data and record it in the chart below. With this data available you can proceed on to the calculations on the following page.

Measurements Required for RPG Selection	Customer Data (record your values below)	Sample Data	
Angle Gear Rotates Relative to Horizontal Plane (θ_H)	o	0°	8
Rotational Moment of Inertia (I)	kgm²	10.0 kgm²	
Indexes Per Revolution (N _I)	IPR	8 IPR	
Indexes Per Day (N_{day})		10800 RPD	
Index Time (t _i) or Known Angular Acceleration (C)	seconds rad/s ²	0.66 sec	
Weight to be Driven (W) Should include everything in motion.	kg	20.0 kg	
Dwell Time (t _p)	seconds	0.33 sec	
Maximum Allowable Ring Gear OD (D_{max})	mm	400 mm	
Minimum Allowable Ring Gear ID (D_{min})	mm	200 mm	
Ring Gear Tooth Orientation (Select one)	external/internal	external	
Other Forces (T ₁), (T ₂) etc. May include gravitational forces due to imbalanced load, springs, wind, counterbalance, fluid dampening systems, etc.	Nm	0 Nm	
Shock Factor (K) Circle the value that best reflects the smoothness of your application.	Shockless Operation1.0Normal Operation1.2Operation with Impact1.5Operation with High Impact3.0	1.2	
Frictional Coefficient (µ) Circle the value that best reflects your application.	Rolling Bearing0.005~0.02Sliding Bearing0.1~0.2	0.01	

SAMPLE APPLICATION INFORMATION

- Electronics Assembly Indexing Table • 1 meter in diameter
- 8 stations equally spaced
- 60 indexes per minute desired
- Dwell time 0.33 sec

Velo	city	\wedge
1	,	This curve will select smallest RPG
\longleftrightarrow	t	Time

Acceleration based on time is linear and may not reflect the actual curve. All calculations assume constant acceleration.

Other Key Application Information

Diameter of Bearing Element (D_B)

Application Description:

Environmental Conditions:

Typical Industrial High Humidity

mm

50 mm

High Temperature High Dust

Positional Accuracy Requirements:

STEP 2: CALCULATING RPG REQUIREMENTS FOR SIMPLE INDEXING APPLICATIONS

Gear selection is based on the load capacity required by your application. Using the information gathered on the preceding page, perform the following calculations. If acceleration or deceleration times vary, or there are other changes in velocity, calculate the acceleration torque for each interval and use the highest value for RPG selection purposes.

				Accelerat	ON TIME
Acceleration Time: $\mathbf{t}_{A} = \mathbf{t}_{I} \div 2$		$\mathbf{t}_{A} =$	sec ÷ 2	t_ =	sec
Sample: $\mathbf{t}_{A} = 0.66$ seconds $\div 2 = 0.33$ seconds					
				ROTATION ANGL	e Per Index
Rotation Angle Per Index: $\boldsymbol{\theta} = \boldsymbol{2}\boldsymbol{\pi} \div \boldsymbol{N}_{\mathrm{I}}$		$\theta = 2\pi \div$	IPR	θ =	rad
Sample: $\mathbf{\theta} = 2\pi \div 8$ <i>IPR</i> = 0.785 rad					144
				Max Angul	ar Speed
Max Angular Speed: $\boldsymbol{\omega} = \boldsymbol{\theta} \div \boldsymbol{t}_{I} \bullet \boldsymbol{2}$	ω =	rad ÷	sec • 2	ω =	rad/sec
Sample: $\mathbf{O} = 0.785 \text{ rad} \div 0.66 \text{ seconds} \cdot 2 = 2.$	380 rad/sec				100.000
				Angular Ac	CELERATION
Angular Acceleration: $\alpha = \omega \div t_{a}$	α =	rad/sec ÷	sec	α =	rad/s ²
Sample: Q = 2.380 rad/sec ÷ 0.33 sec = 7.212 ra	ad/s²				
Ring Gear Torque: $\mathbf{T}_{gear} = (\mathbf{I} \cdot \boldsymbol{\alpha}) + ((\mathbf{W} \cdot \boldsymbol{\mu} \cdot \mathbf{I}))$	D _B) ÷ 2000)			Ring Gear	Torque
$\mathbf{T}_{gear} = \begin{pmatrix} kgm^2 \bullet rad/s^2 \end{pmatrix} + \begin{pmatrix} ($	kg •	•	- 2000)	T _{gear} =	Nm
Sample: $T_{gear} = (10 \text{ kgm}^2 \cdot 7.212 \text{ rad/s}^2) + ((20 \text{ kg})^2)$	g•0.01•50 mm)	÷ 2000) = 72.125 Nr	n	RING GEAR TORQUE	
RING GEAR TORQUE WITH SHOCK FACTOR:		$\mathbf{T}_{\mathrm{T}} =$	۰ ۱m	KING GEAR TORQUE	
$\mathbf{T}_{T} = \mathbf{T}_{gear} \bullet \mathbf{K}$		-1 - 1		$\mathbf{T}_{\mathrm{T}} =$	Nm
Sample: T _T = 72.125 Nm • 1.2 = 86.55 Nm				Pinion Thrust Real	
PINION THRUST REQUIRED AT MAX OD:	$\mathbf{F}_1 = ($	Nm ÷	mm)• 2000		
$F_{1} = (T_{T} \div D_{max}) \cdot 2000$ Sample: $F_{1} = (86.55 \text{ Nm} \div 400 \text{ mm}) \cdot 2000 = 4$				F ₁ =	N
Sample. F ₁ = (80.33 Nm ÷ 400 mm) * 2000 = 4	132.73 N			PINION THRUST REC	NUDED AT MIN ID
PINION THRUST REQUIRED AT MIN ID:	$F_2 = ($	Nm ÷	mm)• 2000		
$F_2 = (T_T \div D_{min}) \cdot 2000$ Sample: $F_2 = (86.55 \text{ Nm} \div 200 \text{ mm}) \cdot 2000 = 8$	•	INITI •	11117 2000	$F_2 =$	N
Sample. $\mathbf{r}_2 = (80.33 \text{ Nm} \div 200 \text{ mm}) \bullet 2000 = 8$	00.0 N				

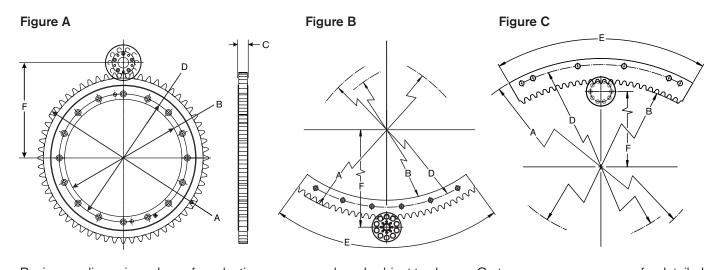
STEP 3: SELECTING A GEAR SIZE

Using the table to the right, circle the RPG size needed to meet the Pinion Thrust requirements of your application (as calculated above).

		RPG SIZE	10	12	16	20	25	32	40	4014
	PREMIUM PINION Dynamic Thrust (N)	@ Min Life	250	500	2400	2900	4000	6300	6000	14000
		@ Max Life	250	500	1000	1500	2200	3600	6000	14000
	VALUE PINION Dynamic Thrust (N)		NA		500	750	1100	NA		

STEP 4: VERIFY YOUR SYSTEM SPECIFICATIONS

Using the selected RPG size and the Ring Gear Torque with Shock Factor requirement calculated above, use the tables on the next page to select a gear. Review Gear Specifications to ensure the selected gear meets all of your application requirements.


Gear Product Number

Gear Specifications

RPG	Gear	Gear	Pinion	Maximum Dyna	amic Torque @	Max Static		Accuracy	Repeatability
Size	Product	Ratio	Туре	Minimum Life	Maximum Life	Torque	Max RPM	Accuracy	Repeatability
	Number		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Nm	Nm	Nm		ArcSec	ArcSec
			PREMIUM	183.3	101.1	183.3	500	+/- 84.2	+/- 14
	966566	3:1	VALUE	38.1	38.1	38.1	250	+/- 308.7	+/- 14.0
	OCCECT	4.4	PREMIUM	244.4	134.8	244.4	375	+/- 63.4	+/- 10.6
	966567	4:1	VALUE	50.8	50.8	50.8	188	+/- 232.5	+/- 10.6
	966568	5:1	PREMIUM	305.5	168.5	305.5	300	+/- 50.9	+/- 8.5
	900008	5.1	VALUE	63.5	63.5	63.5	150	+/- 186.5	+/- 8.5
16	966569	6:1	PREMIUM	366.6	202.2	366.6	250	+/- 42.5	+/- 7.1
10	000000	0.1	VALUE	76.2	76.2	76.2	125	+/- 155.7	+/- 7.1
	966570	7:1	PREMIUM	427.7	235.9	427.7	215	+/- 36.5	+/- 6.1
-			VALUE	88.9	88.9	88.9	108	+/- 134.0	+/- 6.1
	966797	15:1	PREMIUM	916.5	505.5	916.5	100	+/- 16.9	+/- 2.8
-			VALUE	190.5	190.5	190.5	50	+/- 62.1	+/- 2.8
	966571	40:1	PREMIUM	2444.0	1348.0	2444.0	38	+/- 6.4	+/- 1.1
			VALUE	508.0	508.0	508.0	19	+/- 23.4	+/- 1.1
	966572	14:1	PREMIUM	1292.2	735.0	1337.0	108	+/- 14.4	+/- 2.4
-			VALUE	334.6	334.6	334.6	43	+/- 52.6	+/- 2.4
	966798	15:1	PREMIUM	1384.5	787.5	1432.5	100	+/- 13.4	+/- 2.2
-			VALUE	358.5	358.5	358.5	40	+/- 49.2	+/- 2.2
	966799	18:1	PREMIUM	1661.4	945.0	1719.0	84	+/- 11.2	+/- 1.9
20			VALUE	430.2	430.2	430.2	34 28	+/- 41.2 +/- 3.7	+/- 1.9
	966793	54:1	PREMIUM	<u>4984.2</u> 1290.6	2835.0 1290.6	5157.0 1290.6	12	+/- 3.7	+/- 0.6
-			VALUE	6313.3	3591.0	6532.2	22	+/- 2.9	+/- 0.5
	966789	68.4:1	VALUE	1634.8	1634.8	1634.8	9	+/- 10.7	+/- 0.5
-			PREMIUM	8307.0	4725.0	8595.0	17	+/- 2.2	+/- 0.4
	966787	90:1	VALUE	2151.0	2151.0	2151.0	7	+/- 8.2	+/- 0.4
				477.6	268.5	528.0	607	+/- 53.6	+/- 8.9
	966573	3:1	VALUE	138.0	138.0	138.0	160	+/- 196.4	+/- 8.9
-			PREMIUM	636.8	358.0	704.0	455	+/- 40.1	+/- 6.7
	966574	4:1	VALUE	184.0	184.0	184.0	120	+/- 147	+/- 6.7
-			PREMIUM	796.0	447.5	880.0	364	+/- 32.3	+/- 5.4
	966575	5:1	VALUE	230.0	230.0	230.0	96	+/- 118.4	+/- 5.4
25	000550		PREMIUM	955.2	537.0	1056.0	304	+/- 26.9	+/- 4.5
	966576	6:1	VALUE	276.0	276.0	276.0	80	+/- 98.8	+/- 4.5
	966577	7.5:1	PREMIUM	1194.0	671.3	1320.0	243	+/- 21.5	+/- 3.6
	300077	7.0.1	VALUE	345.0	345.0	345.0	64	+/- 78.9	+/- 3.6
	966578	48.6:1	PREMIUM	7737.1	4349.7	8553.6	38	+/- 3.3	+/- 0.6
			VALUE	2235.6	2235.6	2235.6	10	+/- 12.1	+/- 0.6
	966638	4:1	PREMIUM	1540.0	874.8	1760.0	430	+/- 26.5	+/- 4.4
32	966639	7.25:1	PREMIUM	2791.3	1585.6	3190.0	238	+/- 14.6	+/- 2.4
32	966763	37.5:1	PREMIUM	14437.5	8201.3	16500.0	46	+/- 2.8	+/- 0.5
	966778	63.3:1	PREMIUM	24383.3	13851.0	27866.7	28	+/- 1.7	+/- 0.3
10	966791	4:1	PREMIUM	1833.6	1833.6	3667.2	188	+/- 21.0	+/- 3.5
40	966549	16.7:1	PREMIUM	7640.0	7640.0	15280.0	45	+/- 5.0	+/- 0.8
	966818	3:1	PREMIUM	3743.4	3743.4	5614.8	215	+/- 23.8	+/- 4.0
1011	966696	5.14:1	PREMIUM	6417.3	6417.3	9625.4	126	+/- 14.0	+/- 2.3
4014					i i i i i i i i i i i i i i i i i i i	1	1		1

Common Attributes for All Gears											
Estimated Life	See System Life section.										
Operating Temperature Range °C	-5 to 40										
Tooth Grease	Part Number 853901										

Gear Dimensions & Specifications by Product Number

Basic gear dimensions shown for selection purposes only and subject to change. Go to <u>www.nexengroup.com</u> for detailed drawings and CAD models. If none of the products below meet your needs, contact Nexen and one can be designed to your specifications. Due to the variety of gears and gear segments, these products are made to order. Please contact Nexen for lead times.

D	Dimensions shown in <i>mm</i> unless otherwise noted.											D	E	F
RPG Size	Gear Product Number	Alignment Tool Product Number	Teeth Orientation	Number of Teeth	Moment of Inertia	Weight kg	Figure	Coating	Outer Diarr		Max Width	Bolt Circle Ø	Arc Length/ Full Ring	Distance from Center
	966566	NA	external	NA/30	0.004	1.2	A	Hard Chrome	161	70	11.5	90	360°/yes	98
	966567	NA	external	NA/40	0.004	1.7	A	Hard Chrome	209	120	11.5	145	360°/yes	122
	966568	NA	external	NA/50	0.03	2.4	A	Hard Chrome	257	160	11.5	180	360°/yes	146
16	966569	NA	external	NA/60	0.05	3.4	A	Hard Chrome	305	190	11.5	220	360°/yes	170
	966570	NA	external	NA/70	0.08	3.3	Α	Hard Chrome	352	260	11.5	285	360°/yes	193.5
	966797	966557	external	30/150	0.19*	1.6*	В	Hard Chrome	745	652	11.5	670	72°/yes	390
	966571	966656	external	25/400	1.64*	1.8*	В	Hard Chrome	1954	1830	11.5	1870	22.5°/yes	995
	966572	966706	external	28/140	0.48*	2.9*	В	Hard Chrome	880	770	15.5	810	72°/yes	462
	966798	966615	internal	25/150	0.86*	3.6*	С	Hard Chrome	1038	906	15.5	1013	60°/yes	430
	966799	966734	external	30/180	0.76*	2.7*	В	Hard Chrome	1120	1020	15.5	1060	60°/yes	582
20	966793	966794	external	30/540	9.57*	3.6*	В	Hard Chrome	3338	3220	15.5	3250	20°/yes	1692
	966789	966790	internal	19/684	14.9*	3.2*	С	Hard Chrome	4400	4241	15.5	4354	10°/yes	2098
	966787	966788	external	30/900	36.3*	4.9*	В	Hard Chrome	5554	5392	15.5	5438	12°/yes	2800
	966573	NA	external	NA/30	0.04	4.5	А	Hard Chrome	254	120	18.5	145	360°/yes	154
	966574	NA	external	NA/40	0.12	6.8	А	Hard Chrome	331	190	18.5	220	360°/yes	193
0.5	966575	NA	external	NA/50	0.25	9.1	А	Hard Chrome	404	260	18.5	285	360°/yes	230
25	966576	NA	external	NA/60	0.47	11.5	А	Hard Chrome	480	330	18.5	360	360°/yes	268
	966577	NA	external	NA/75	0.93	13.5	А	Hard Chrome	596	460	22.5	490	360°/yes	326
	966578	966740	external	27/486	15.7*	4.6*	В	Hard Chrome	3760	3640	18.5	3684	20°/yes	1908
	966638	NA	external	NA/48	0.69	16.6	А	Hard Chrome	493	330	24.5	360	360°/yes	292
32	966639	NA	external	NA/87	4.4	27.8	А	Black Oxide	874	730	24.5	770	360°/yes	482
32	966763	966685	external	18/450	35.7*	7.7*	В	Hard Chrome	4400	4220	24.5	4280	14.4°/yes	2246
	966778	966779	external	19/760	112.8*	8.4*	В	Hard Chrome	7428	7250	24.5	7310	9°/yes	3760
40	966791	NA	external	NA/48	2.5	39.2	А	Hard Chrome	622	390	35.5	430	360°/yes	369
40	966549	966546	external	11/200	9.1*	6.4*	В	Hard Chrome	2482	2320	31.5	2360	19.8°/no	1300
	966818	NA	external	NA/42	1.69	31.5	А	Hard Chrome	551	390	46	430	360°/yes	346
4014	966696	966547	external	18/72	2.82*	17.3*	В	Hard Chrome	916	711.2	42	785	90°/yes	529
	966725	966548	external	12/192	12.5*	9.4*	В	Hard Chrome	2392	2230	42	2270	22.5°/yes	1268

* Per Segment

RPS ROLLER PINION

Once you have selected your rack/gear, finding the right pinion is easy. The following pages offer step-by-step selection instructions as well as pinion specifications and details on accessories.

Pinion Selection Process 22
Specifications
Dimensional Drawings 23-26
Pinion Accessories
Adapters 27
Preloaders

RPS Pinion Selection Process

STEP 1: *Determine your rack/gear size and find the same RPS pinion size. Always use the same size rack/gear and pinion.*

STEP 2: Select the material best suited for your application. (Other materials available upon request.)

Max

Hard Chrome: alloy steel with a thin, dense chrome coating Nickel: alloy steel with nickel plating

Stainless: stainless steel with or without a hard chrome coating

STEP 3: Select Mounting Style: For easy installation and maximum versatility, Nexen recommends using the flangemounted version when practical.

Shaft Mount

RPS

4014

16

20

25

PINIONS

VALUE

14

10

10

10

Pinion

Number

- Shaft Coupling or Shaft & Keyway mounting option

Pitch Circle

Flange Mount

Base Material/

Conforms to ISO 9409 specifications

Bore

Mass

Moment of

· Coupling option uses a keyless mechanical compression coupling to secure to shaft · Nexen adapter preloader options available with this version

Product

· Available in multiple bore diameters. Contact Nexen.

Distance per

Revolution Diameter Mount Style Size Inertia of Туре Size RPM Number Coating Rollers kgm²x10⁻⁴ mm mm mm kg 10 10 100 31.8 2400 966480 Hard Chrome Shaft Coupling 12 0.2 0.4 Hard Chrome 12 10 120 38.2 4000 966490 Shaft Coupling 16 0.3 1.0 966819 Nickel Shaft Coupling 16 0.7 3.9 966650 Nickel Shaft Coupling 20 0.7 3.9 16 10 160 50.9 1500 966761 Stainless Shaft Coupling 20 0.7 3.9 966687 Nickel Flange N/A 0.8 4.0 966759 Stainless Flange N/A 0.8 4.0 Shaft Coupling 10.6 966820 Nickel 22 1.4 966660 Nickel Shaft Coupling 1.3 10.5 25 20 10 200 63.7 1500 966771 10.5 Stainless Shaft Coupling 25 1.3 966675 Nickel Flange N/A 1.2 10.2 Request Stainless Flange N/A 1.2 10.2 PREMIUM PINIONS 966670 Nickel Shaft Coupling 30 2.1 25.5 966758 Shaft Coupling 2.1 25.2 Stainless 30 25 10 250 79.6 1820 966673 N/A 25.2 Nickel Flange 2.1 Flange N/A 25.2 Stainless 2.1 Request 966821 Nickel Shaft Coupling 32 7.3 173.0 Shaft Coupling 171.0 966822 Nickel 40 6.8 966680 Nickel Shaft Coupling 45 6.4 169.0 12 384 122.2 1719 32 Request Stainless Shaft Coupling 45 6.4 169.0 966677 Nickel Flange N/A 6.6 168.0 Stainless N/A 6.6 168.0 Request Flange 966823 598.0 Nickel Shaft Coupling 55 12.9 966690 Nickel Shaft Coupling 60 12.4 594.0 40 12 480 152.8 750 Shaft Coupling 60 12.4 594.0 Request Stainless 966697 Nickel Flange N/A 15.5 665.0 Stainless N/A 15.5 665.0 Request Flange 966824 1184.0 Nickel Shaft Coupling 55 21.4 966693 Nickel Shaft Coupling 20.9 1180.0 60

* The maximum rated speed of a RPS system is equal to the lowest rating of either the pinion or the rack.

178.3

50.9

63.7

79.6

643

750

600

480

Request

966700

Request

966826

966827

966828

Stainless

Nickel

Stainless

Aluminum

Aluminum

Aluminum

Shaft Coupling

Flange

Flange

Shaft & Keyway

Shaft & Keyway

Shaft & Keyway

60

N/A

N/A

16

16

22

20.9

23.5

23.5

0.4

0.7

1.1

1180.0

1306.0

1306.0

2.4

6.0

14.7

See the **Definitions** section for more information on these attributes.

560

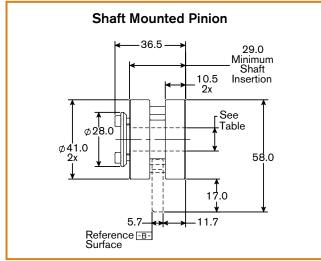
160

200

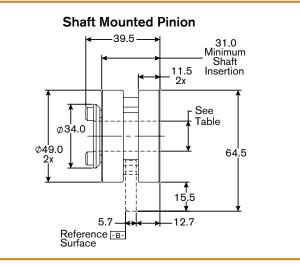
250

Common Attributes for All Pinions						
Estimated Life	See System Life section.					
Operating Temperature Range °C	-5 to 40					
Lubrication/Tooth Grease	Part Number 853901					

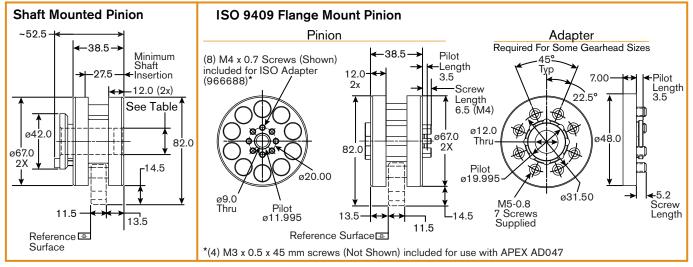
Pinion Dimensions

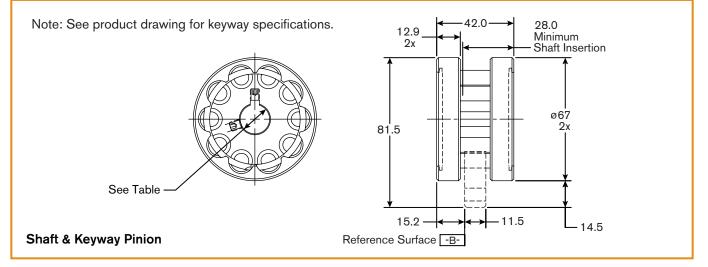

Additional **D**IMENSIONS

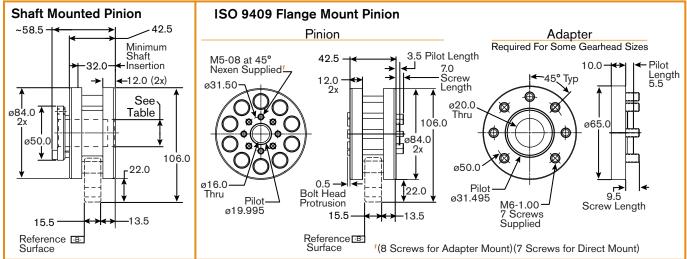
The Pinion dimensions listed here are for selection purposes only. For detailed drawings and CAD models, please visit www.nexengroup.com.

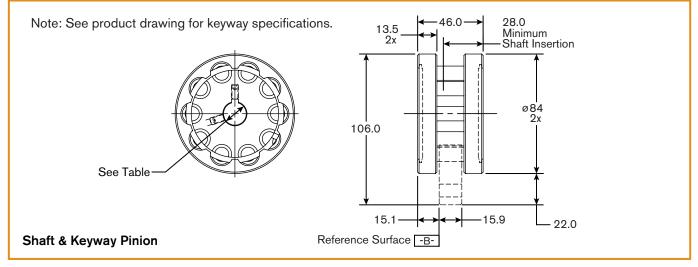

PINION ADAPTERS

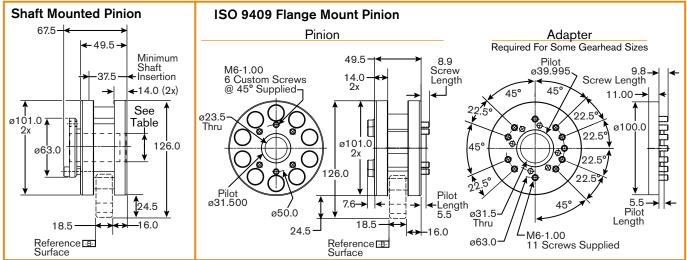
Pinion adapters allow the pinion to mount to one frame-size larger of a reducer. Moving up a reducer size is sometimes needed due to reducer availability or motor sizing reasons. All Nexen pinion adapters are made from corrosion resistant materials or coatings. For your convenience, we have included pinion adapter dimensions next to each ISO9409 flange mounted pinion. See Table 6 for pinion adapter part numbers.

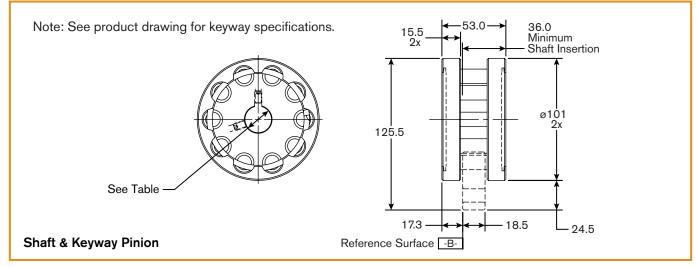

RPS10 Premium Pinion

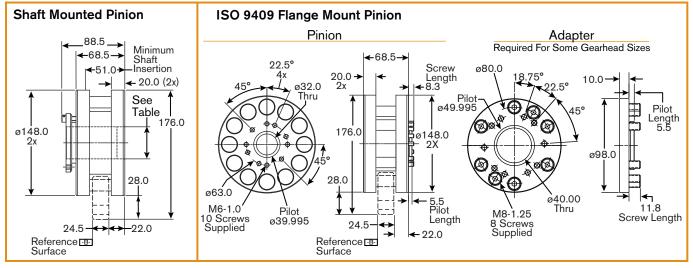

RPS12 Premium Pinion

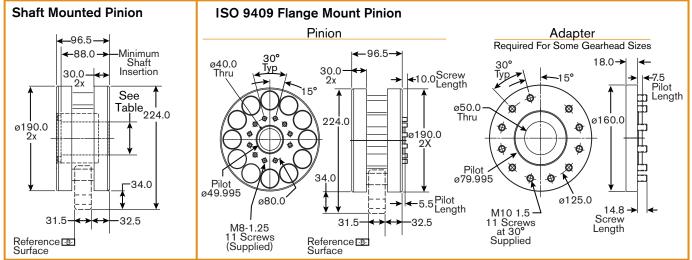

RPS16 Premium Pinion

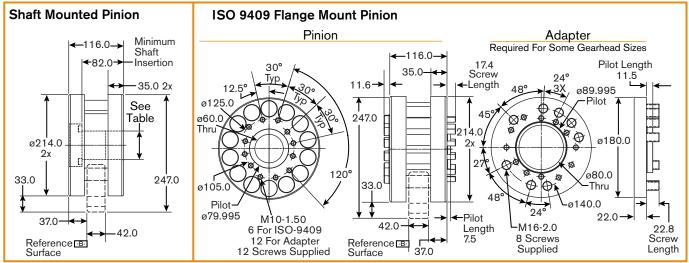

RPS16 Value Pinion


RPS20 Premium Pinion


RPS20 Value Pinion

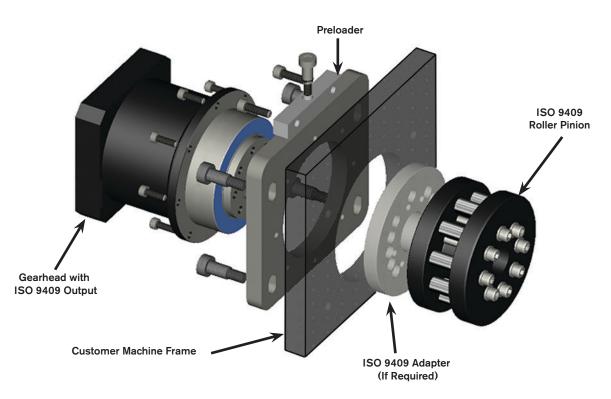

RPS25 Premium Pinion


RPS25 Value Pinion


RPS32 Premium Pinion

RPS40 Premium Pinion

RPS4014 Premium Pinion


Pinion Preloader

Pair Nexen's Flange-Mount Pinion with our RPS Pinion Preloader for easy integration into your machine design. Preloaders feature an adjuster that allows the pinion to be moved up or down into the rack while keeping the pinion properly oriented to the rack. The pilot in the adjuster plate accommodates common servo gearhead sizes from your favorite servo gearhead manufacturer.

Preloader and Adapter components are either made from corrosion-resistant stainless steel, nickel, or zinc plating.

FEATURES:

- High-Precision Ground Surfaces
- Allows Perpendicular Movement
- Corrosion Resistant Materials

SELECTING PINION ADAPTERS AND PRELOADERS

If directly mounting the pinion to the reducer: Disregard the Adapter column and select the preloader and gearhead for your RPS Pinion size.

If going up a reducer frame size:

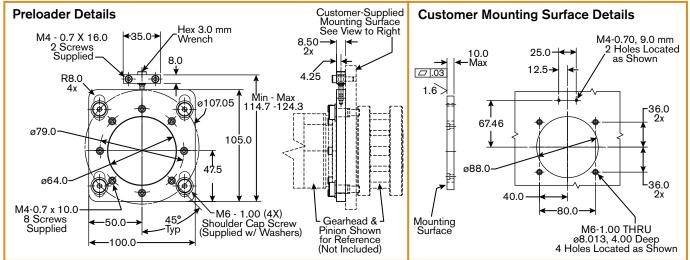
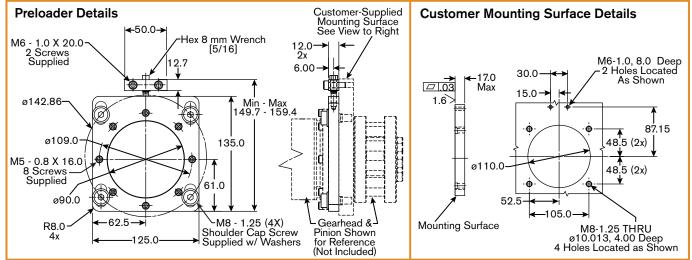
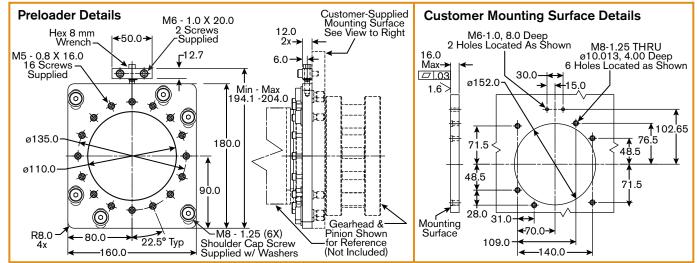
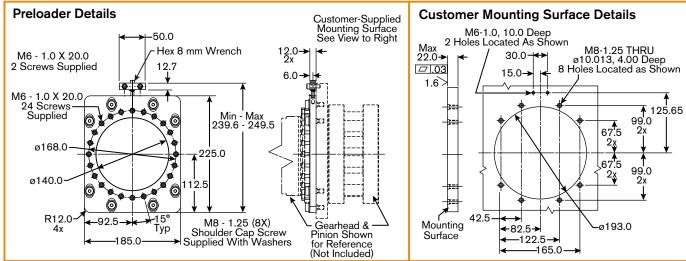

Start in the Adapter column and select the compatible pinion, adapter, preloader and gearhead.

Table 6 Gearhead Compatibility Table

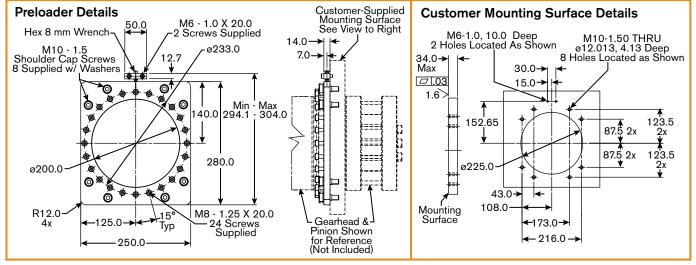

	Adapter w/ Pinion (not required in some applications)	Pinion Preloader	Customer Provided Gearhead							
Pinion Size			Alpha/ Wittenstein	APEX	Mijno	Neugart	SEW-Euro	Sumitomo	Stöber	
RPS16	N/A	N/A	N/A	AD047	N/A	N/A	N/A	N/A	N/A	
RPS20	RPS16 & 966688	960851	TP004	AD064	BDB 085	PLFE/N 64	PSBF221/2	N/A	PH/A/KX 321/2	
RPS25	RPS20 & 966676	960850	TP010	AD090	BDB 120	PLFE/N 90	PSBF321/2	PNFX080	PH/A/KX 421/2	
RPS32	RPS25 & 966674	960852	TP025	AD110	BDB 145	PLFE/N 110	PSBF521/2	PNFX250	PH/A/KX 521/2	
RPS40	RPS32 & 966668	960853	TP050	AD140	BDB 180	PLFN 40	PSBF621/2	PNFX450	PH/A/KX 721/2	
RPS4014	RPS40 & 966698	960854	TP110	AD200	BDB 250	PLFN 200	PSBF721/2	N/A	PH/A/KX 821/2	
N/A	RPS4014 & 966701	N/A	TP300	AD255	BDB 300	N/A	N/A	N/A	PH/A/KX 912/23	

This is a partial list. Other gearheads may apply.


RPS-PRE-ISO-064-3 Product Number 960851



RPS-PRE-ISO-090-3 Product Number 960850


RPS-PRE-ISO-110-3 Product Number 960852

RPS-PRE-ISO-140-3 Product Number 960853

RPS-PRE-ISO-200-3 Product Number 960854

PRECISION RING DRIVE SYSTEM

CE

PATENTED

RoHS

Based on Nexen's innovative Roller Pinion technology, the Precision Ring Drive System (PRD) comes complete with a precision-grade bearing and gearhead for a system with unmatched performance and efficiency. With accelerations up to twice as high as other indexing technologies, the PRD system provides more productivity while boasting low maintenance and long life.

Features & Benetits	-33
PRD Selection Process Application Data	
Calculations	
Timing Diagrams	. 36
Load Diagrams 37	-39
Dimensional Drawing	. 40
Specifications	. 41

The Nexen Precision Ring Drive Advantage

The Precision Ring Drive System (PRD) simplifies the selection process and includes all components needed for your rotary drive system. The PRD system offers all the great features of our other advanced RPS technology and opens up new design possibilities to next generation machines.

High Indexing Precision

With an indexing precision up to \pm 11 ArcSec and repeatability up to \pm 1.2 ArcSec, Nexen's PRD offers unmatched mechanical system capabilities.

Unlimited Performance At Any Position

Unlike some cam driven systems, the PRD can start and stop at any incremental position. Users can change the motion profile by simply loading a new servo drive program. The PRD also allows maximum acceleration or deceleration at any point without the risk of damage.

High Load Capacity

The PRD table is supported by a high capacity cross-roller bearing rated for loads up to 1575 kN.

Rigidity

The PRD provides very high system rigidity. An innovative design combination of a preloaded cross-roller bearing, RPS, and a precision gearbox create the high rigidity customers demand.

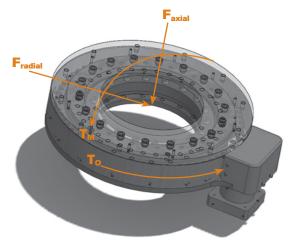
High Speed & Acceleration

The PRD is capable of speeds of up to 94 RPM. Unlike traditional cam driven systems, the PRD can handle peak torque inputs at any time. This allows for indexing times up to 2x faster than the competition.

EASY SYSTEM INTEGRATION MINIMAL ONGOING MAINTENANCE

Large Open Center

The Ring Drive has a large open center that allows users to easily mount equipment and cabling in the center of the rotating plate.


INDUSTRY PROBLEMS	Large, Open-Center Cam Indexers	Traditional Gearing	Belt Drives	Direct Drive Motors	NEXCEN . PRECISION RING DRIVE
Low Accuracy					High Positional Accuracy
Backlash /Vibrations					Near-Zero Backlash
High Cost					Economical & Efficient
Dirty Operation					No Dust or Oil Emissions
High Maintenance	۲				Little to No Maintenance
Low Load Capacity					High Load Capacity
Noisy	•				Quiet
Low Speed					Speeds up to 94 RPM
Magnetic Field					No magnetic field
High Wear/Low Life					Long Life
Low Acceleration	۲				Rapid Accelerations
Inefficient					99% Efficient
Poor Rigidity	Ť				High Rigidity
Mounting Restrictions					Mounting In Any Position

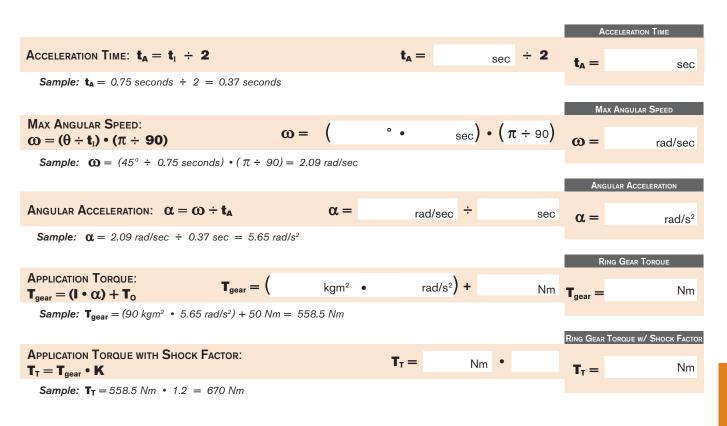
Overcoming Common Problems Found in Other Drive Systems

Precision Ring Drive Selection Process

Nexen will work with you to select the perfect Precision Ring Drive for your application needs. Please fill in the application data below and perform the calculations on the following page. With this information, Nexen will select a PRD system to meet all your application requirements.

STEP 1: GATHER APPLICATION DATA

Before you begin calculations, there are key measurements that you will need from your application. Collect the data and record it in the chart below. With this data available you can proceed on to the calculations on the following page. (Refer to the diagram to the right when completing the table below.)


Measurements Required for PRD Selection	Customer Data (record your values below)	Sample Data	
Load Inertia (I)	kgm ²	90 kgm²	
Index Time (t _I)	seconds	0.75 seconds	
Move Distance (0)	0	45°	
Maximum Axial Load (F_{axial})	kN	100 kN	
Maximum Radial Load (F_{radial})	kN	0 kN	
Maximum Moment Load (T _M)	kNm	5 kNm	
Other Applied Torque Loads (T _o) May include table support friction, cutting or clamping forces, etc.	Nm	50 Nm	
Shock Factor (K) Circle the value that best reflects the smoothness of your application.	Shockless Operation 1.0 Normal Operation 1.2 Operation with Impact 1.5 Operation with High Impact 3.0	1.2	

Other Key Application Information

Application Description:					
Environmental Conditions:	Typical Industrial	High Humidity	High Temperature		High Dust
Positional Accuracy Requirements:					
Mounting Orientation:	Vertical (Radial Load) 🔲 Horizontal (A _l	Horizontal (Applied Load)		ntal (Suspended Load)

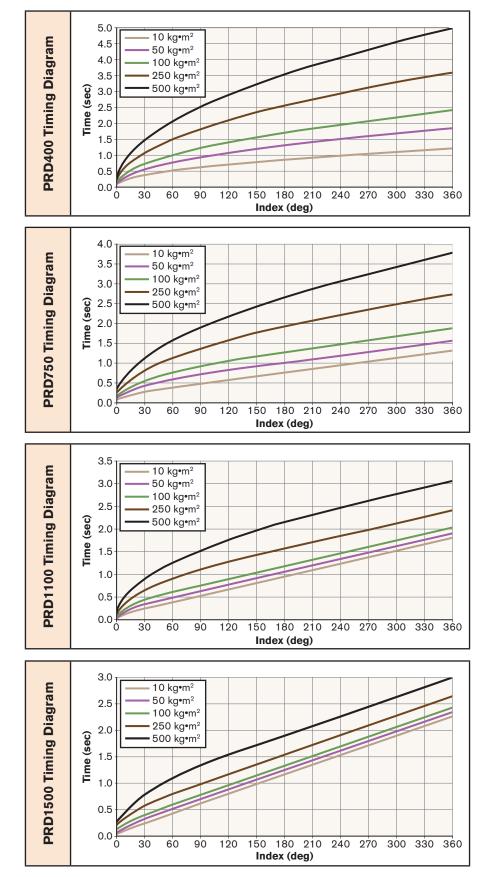
STEP 2: CALCULATING PRD REQUIREMENTS FOR SIMPLE INDEXING APPLICATIONS

PRD selection is based on the torque requirements of your application. Using the information gathered on the preceding page, perform the following calculations. If your application movement is more complex than basic indexing, evaluate each stage of movement independently and perform separate calculations for each stage.

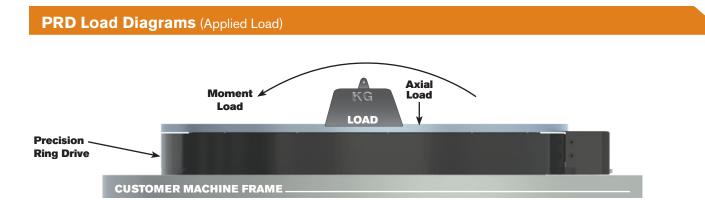
STEP 3: EVALUATE LOAD CARRYING CAPACITY

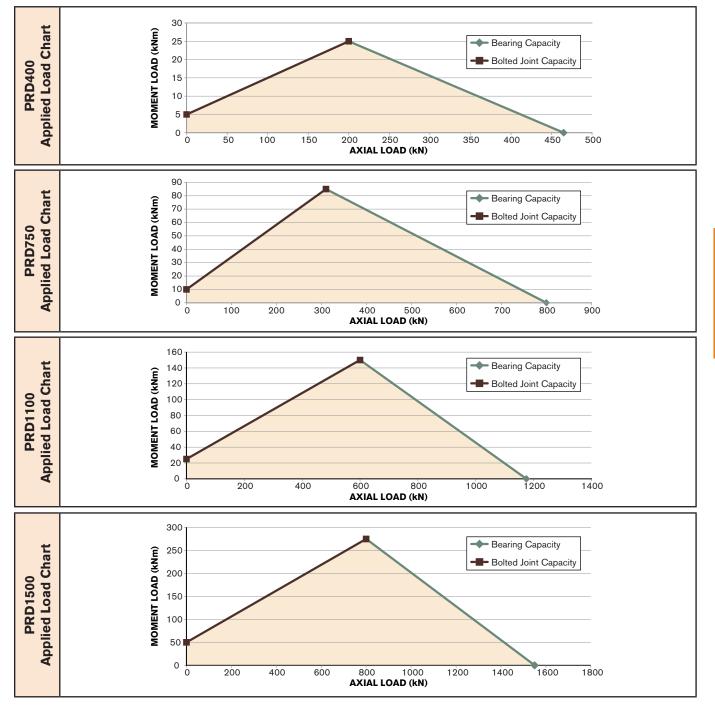
Use the data for Maximum Axial Load, Maximum Radial Load, Maximum Moment Load, and Mounting Orientation to evaluate your load carrying needs against the load diagrams on the following pages.

To do this, find the set of charts that represents your mounting orientation, then graph your data in the appropriate charts(s) to ensure that your requirements fall into the shaded area representing load capacity available in that PRD size and orientation.

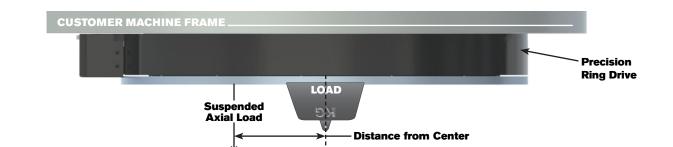

(NOTE: The weight of the PRD is already factored into the load charts.)

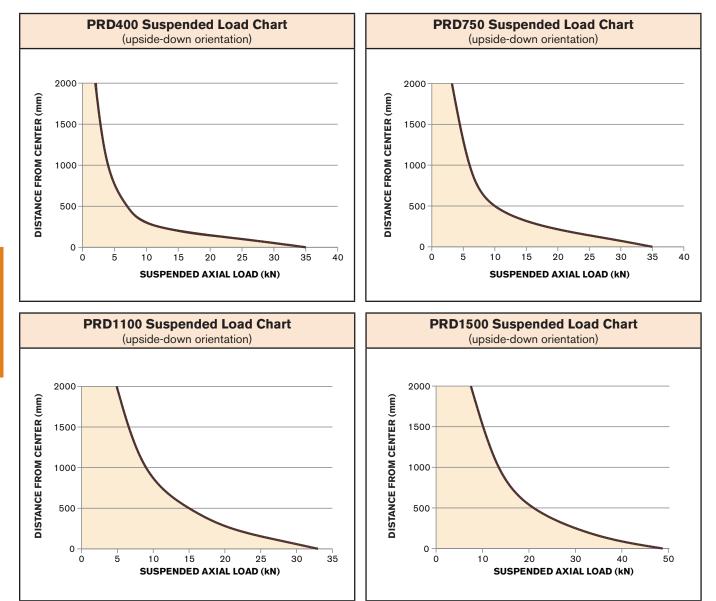
STEP 4: CHOOSE YOUR PRD SIZE

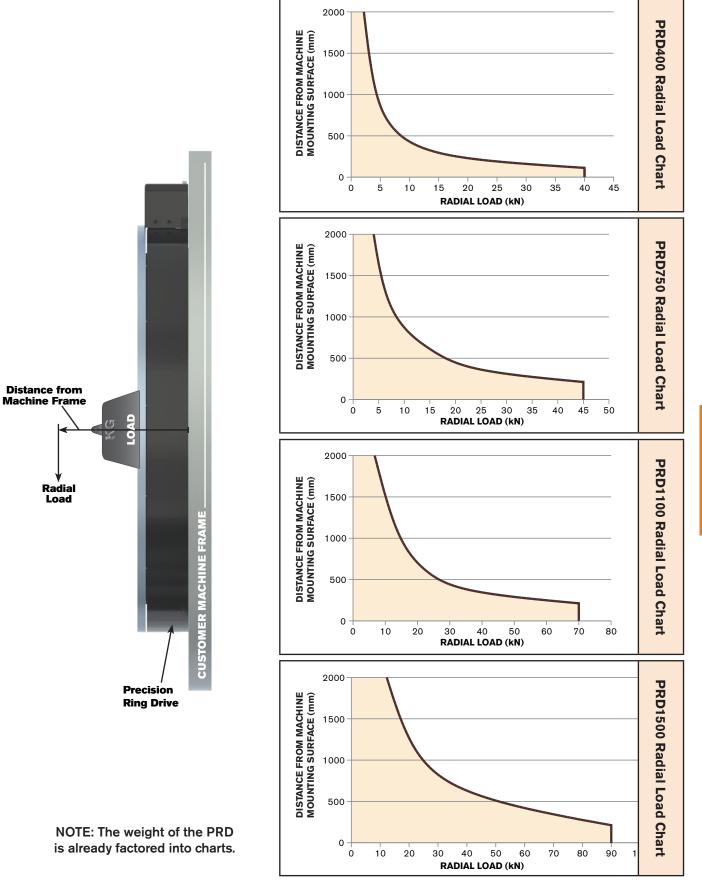

Use the Application Torque with Shock Factor requirement calculated in Step 2 and the load evaluation from Step 3 to select the PRD size that best fits your application. Review PRD Specifications to ensure the selected size meets all of your application requirements.


SELECTED PRD SIZE

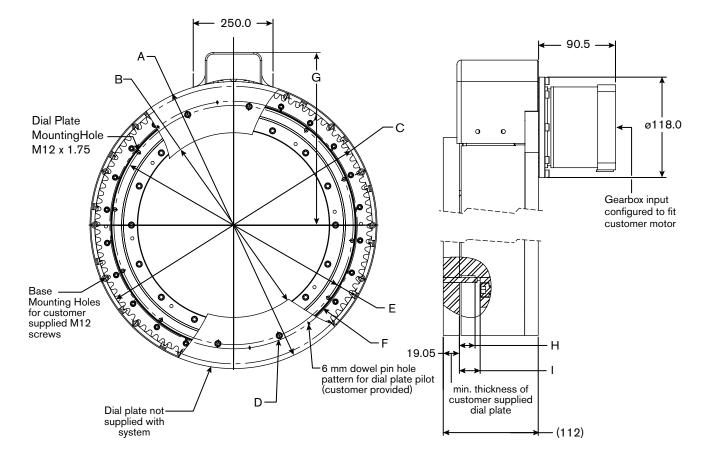
Precision Ring Drive Timing Diagrams




NOTE: Curves assume no external forces such as additional table support friction, cutting forces, etc.



PRD Load Diagrams (Suspended Load)



PRD Load Diagrams (Radial Load)

Precision Ring Drive Dimensions

NOTE: Basic dimensions shown for selection purposes only and subject to change. Visit www.nexengroup.com for detailed drawings and CAD models before designing into your system. (All dimensions shown in mm.)

		PRD400	PRD750	PRD1100	PRD1500
Α	Minimum Outer Diameter	550	900	1350	1750
В	Maximum Inner Diameter	280	579	966	1330
С	Base Mounting Hole Circle Diameter	500	870	1325	1715
D	Dial Plate Bolt Pattern Circle Diameter	396	750	1100	1500
E	Ring Drive Pilot Diameter	460	770	1150	1525
F	Dowel Pin Hole Circle For 6mm Pins	466	776	1156	1531
G	Drive Enclosure Envelope to Center Distance	363	543	770	970
н	Minimum Depth to Dial Plate Pilot	0	18.5	18.5	18.5
I	Maximum Depth to Dial Plate Pilot	7	24.5	24.5	24.5

Precision Ring Drive Specifications

Performance Specifications		PRD400	PRD750	PRD1100	PRD1500
Positional Accuracy*	±ArcSec	35	21	13	11
One Way Repeatability*	±ArcSec	4.2	2.4	1.6	1.2
Maximum Backlash*	±ArcSec	12	7	4	3
Peak Torque at Output	Nm	563	968	1496	1936
Maximum Velocity Output	RPM	94	54	35	27
Maximum Acceleration	rad/sec ²	414	110	30	17
Input to Output Ratio (assuming 10:1 gearhead)		64:1	110:1	170:1	220:1
Gear/Pinion Ratio		6.4:1	11:1	17:1	22:1
Estimated Pinion & Ring Gear Life**		60 Million Co	ontacts per Pinion R	oller or 30 Million pe	er Gear Tooth
Output Inertia	kgm ²	1.39	8.83	48.97	112.95
Pinion Inertia	kgm ²		0.0	025	
Total reflected inertia to gearbox output	kgm ²	0.036	0.075	0.172	0.236
Maximum Bearing Drag Torque	Nm	40	100	150	200

* All performance specifications assume using Nexen's standard 10:1 high precision reducer. Other customer specified reducers can be requested but will have an impact on the above specifications.

** Life rating is an estimate based on maintaining published accuracy specifications while operating with allowable dynamic loading. Nexen does not guarantee life since it can be impacted by environmental conditions, and lubrication intervals.

RPS SYSTEM LIFE

The RPS system offers an efficiency greater than 99% with a long life of up to 60,000,000 pinion revolutions (up to 36 million meters of travel). Typically the rack/gear lasts through several pinion changes.

Pinion Life Data & Calculations	44–45
Rack Life Data & Calculations	46-47
System Life Graphs	48-50

Calculating RPS System Life

The calculations in the following section will allow you to calculate the expected rack and pinion life. These calculations will result in the same values as the charts on the following pages.

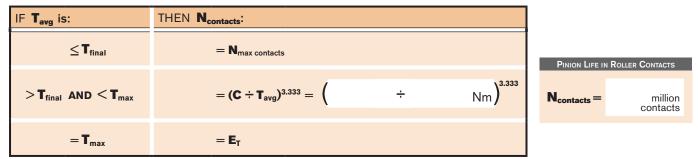
RPS Pinion Life Data & Calculations

Table 7 RPS Pinion Life Values

	RPS10	RPS12	RPS16		RPS20		RPS25		RPS32	RPS40	DDC4044
	RPSIU	RPSIZ	premium	value	premium	value	premium	value	RP532	KF340	RPS4014
Max Torque (T _{max}) Nm	4.0	9.5	61.1	12.8	92.3	23.9	159.2	43.8	385.0	458.4	1247.8
Torque at Max Life (T _{final}) Nm	4.0	9.5	33.7	12.8	52.5	23.9	89.5	43.8	218.7	458.4	1247.8
Distance Per Revolution (Lrev) meters	0.1	0.12	0.16	0.16	0.2	0.2	0.25	0.25	0.384	0.48	0.56
Transition Point (ET) million contacts	60	60	8	2	8.2	2	8.5	2	9.2	60	60
Max Life (N _{max contacts}) million contacts	60	60	60	2	60	2	60	2	60	60	60
Constant (C)	NA	NA	115.30	NA	179.43	NA	305.91	NA	747.91	NA	NA

STEP 1: GATHER APPLICATION DATA

Before you begin calculations, there are three key measurements that you will need from your application. Collect the data and record it in space provided to the right.


Measurements Required for Pinion Calculations	Customer Data (record your values below)	Sample Data
Average Torque (T avg)	Nm	85 Nm
Distance Per Cycle (L) (single direction move)	m	1.3 m
Average Speed (V avg)	m/s	2 m/s

STEP 2: CALCULATE THE TOTAL NUMBER OF PINION CONTACTS (N_{contacts})

Perform the following calculations using the data collected from your application data in Step 1.

PINION ROLLER CONTACTS (Ncontacts)

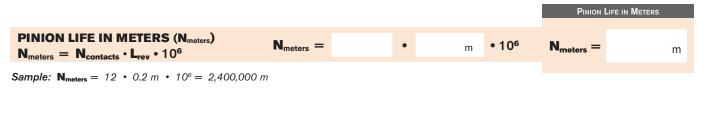
The total number of roller contacts ($N_{contacts}$) that an RPS Pinion can sustain before needing replacement is based on the average torque of your application. Determine which equivalency or inequality statement below is true for the average torque (T_{avg}) of your application. Then complete the corresponding pinion roller contact equation and record your value below.

Sample: (Evaluating RPS20 size) N_{contacts} = (179.43 ÷ 85 Nm)^{3.333} = 12 million contacts

RPS Pinion Life Calculations

STEP 3: CONVERT ROLLER CONTACTS TO HOURS, METERS OR REVOLUTIONS

There are two options for converting contacts to other units: exact and estimated. Exact should be used whenever possible. The estimation is available for customers who do not have a well-defined distance per cycle.


EXACT OPTION: PINION LIFE IN HOURS (Nhours)

Use Table 7 along with the data you collected above to calculate the total number of service hours your pinion can provide before needing replacement. First calculate E_1 to use in the N_{hours} equation.

$E_1 = L \div L_{rev}$ Must round E_1 up to the r	E ₁ = nearest whole integer.	= round (m ÷ m) =	=		
Sample: $E_1 = 1.3 m \div$	$0.2 m = 6.5 m \longrightarrow Roc$	ind up to 7.				
(PINION LIFE IN HOURS	_
$N_{hours} = (N_{contacts} \cdot$	$10^6 \bullet L) \div (3600 \bullet E_1 \bullet$	V _{avg})				_
$N_{hours} = ($	million contacts • 10 ⁶ •	m) ÷ (3600	• •	m/s)	N _{hours} =	hrs
Sample: $N_{hours} = (12 \cdot 12)$	• 10^6 • 1.3 m) ÷ (3600 •	$7 \cdot 2 m/s) = 309.5$	5 hrs			

ESTIMATION OPTIONS: PINION LIFE IN METERS & LIFE IN REVOLUTIONS

These calculations assume the pinion travels nonstop in one direction throughout its whole life.

	Ρινιον	LIFE IN REVOLUTIONS
PINION LIFE IN REVOLUTIONS (N _{rev}) N _{rev} = N _{contacts}	N _{rev} =	million revolutions
Sample: N _{rev} = 12 million revolutions		

RPS Rack Life Data

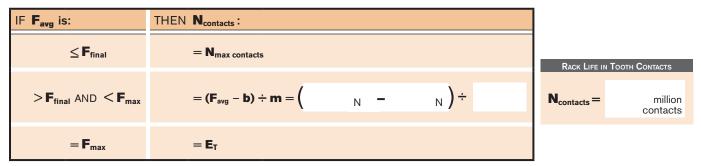
Table 8 RPS Rack Life Values

	RPS Rack Size	RPS10	RPS12	RPS16	RPS20	RPS25	RPS32	RPS40	RPS4014
	Pitch (P) meters	0.01	0.012	0.016	0.02	0.025	0.032	0.04	0.04
Dista	nce Per Revolution (L _{rev}) meters	0.1	0.12	0.16	0.2	0.25	0.384	0.48	0.56
Premium & Standard	Max Dynamic Thrust N (F _{max})	250	500	2400	2900	4000	6300	6000	14000
	Thrust at Max Life N (₣ _{final})	250	500	1000	1500	2200	3600	6000	14000
	Transition Point million contacts	30	30	5	5	5	5	30	30
REMI	Max Life (N _{max contacts})				30 Millio	n Contacts			
<u> </u>	Slope (m)	NA	NA	-56	-56	-72	-108	NA	NA
	Intercept (b) N	NA	NA	2680	3180	4360	6840	NA	NA
В	Max Dynamic Thrust N (F _{max})	NA	NA	1500	2250	3300	5 400	6000	14000
	Thrust at Max Life N (T _{final})	NA	NA	1000	1500	2200	3600	6000	14000
ENDURANCE	Transition Point million contacts	NA	NA	5	5	5	5	30	30
	Max Life (N _{max contacts})	NA	NA			30 Millio	n Contacts		
	Slope (m)	NA	NA	-20	-30	-44	-72	NA	NA
	Intercept (b) N	NA	NA	1600	2400	3520	5760	NA	NA
LL &	Max Dynamic Thrust (F _{max})	NA	NA	750	1125	1650	2700	4500	10500
Universal & Universal Stainless	Thrust at Max Life N (F _{final})	NA	NA	750	1125	1650	2700	4500	10500
UNIV	Max Life (N _{max contacts})	NA	NA	5 Million Contacts 2 Million Conta			Contacts		
	Max Dynamic Thrust (F _{max})	NA	NA	500	750	1100	NA	NA	NA
Versa	Thrust at Max Life N (₣ _{final})	NA	NA	500	750	1100	NA	NA	NA
	Max Life (N _{max contacts})	NA	NA		2 Million	Contacts		1	NA

RPS Rack Life Calculations

STEP 1: GATHER APPLICATION DATA

Before you begin calculations, there are three key measurements that you will need from your application. Collect the data and record it in space provided below.


Measurements Required for Rack Calculations	Customer Data (record your values below)	Sample Data
Average Thrust Force (F _{avg})	Ν	2500 N
Distance Per Cycle (L) (single direction move)	m	1.3 m
Average Speed (V avg)	m/s	2 m/s

STEP 2: CALCULATE THE TOTAL NUMBER OF TOOTH CONTACTS

Perform the following calculations using the data collected from your application and the values from Table 8.

RACK TOOTH CONTACTS (N_{contacts})

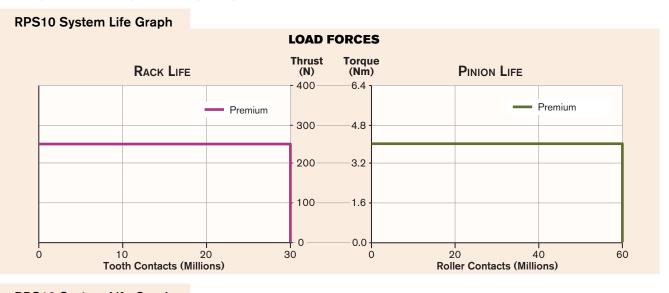
The total number of tooth contacts ($N_{contacts}$) that an RPS Rack can sustain before needing replacement is based on the average thrust force of your application. Use Table 5 to determine which equivalency or inequality statement below is true for the average thrust force (F_{avg}) of your application. Then complete the corresponding rack tooth contact formula and record your value below.

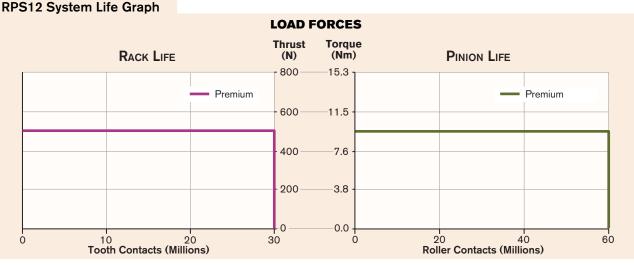
Sample: (Evaluating RPS20 size) N_{contacts} = (2500 N - 3180) ÷ -56 = 12 million contacts

STEP 3: CONVERT RACK TOOTH CONTACTS TO HOURS OF LIFE

Perform the following calculations using the data collected from your application and the values from Table 5.

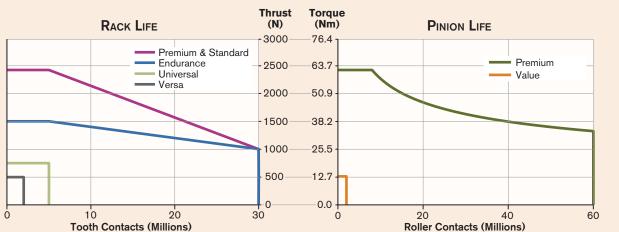
RACK LIFE IN HOURS (Nhours)


Use Table 5 along with the data you collected above to calculate the total number of service hours your rack can sustain before needing replacement.


N _{hours} = (N _{contacts}	÷ 3600) • (L ÷ V _{avg}) • 1	1 O ⁶		RACK LIFE	E IN HOURS
$\mathbf{N}_{\text{hours}} = ($	÷ 3600)•(m ÷	m/s) • 10 ⁶	N _{hours} =	hours

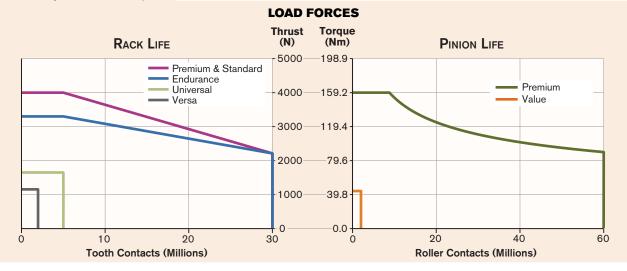
Sample: $N_{hours} = (12 \div 3600) \cdot (1.3 \ m \div 2 \ m/s) \cdot 10^6 = 2166 \ hours$

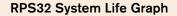
RPS System Life Graphs (RPS10, 12 & 16)

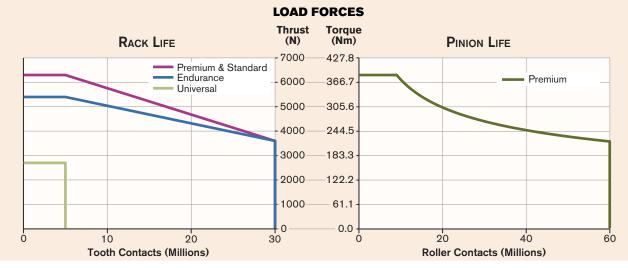

The RPS system life ratings are based on the force of the load. Refer to the following graphs to determine the pinion and rack life based on your application load forces. Graphs show the thrust along side the corresponding torque to more easily calculate your complete system life. Typically the pinion can be replaced numerous times before replacing the rack.



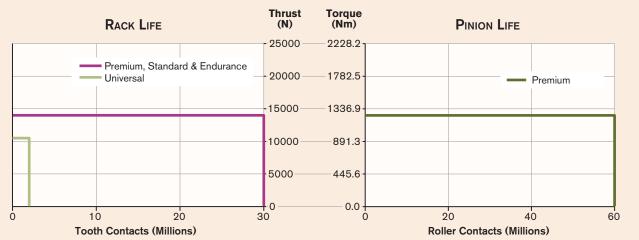
RPS16 System Life Graph






RPS20 System Life Graph

RPS25 System Life Graph


RPS System Life Graphs (RPS40, 4014 & 50)

RPS40 System Life Graph LOAD FORCES Thrust (N) Torque (Nm) RACK LIFE **PINION LIFE** 12000 916.7 Premium, Standard & Endurance -10000 764.0 Premium Universal 8000 611.2 6000 458.4 4000 305.6 2000 152.8 0.0 0 10 20 30 0 20 40 ΰ Tooth Contacts (Millions) **Roller Contacts (Millions)**

RPS4014 System Life Graph

LOAD FORCES

60

HARMONIC GEARHEAD

Nexen's revolutionary Harmonic Gearhead (HG) is the perfect combination of size and precision. Use the Harmonic Gearhead integrated with Nexen's RPS Pinion (HGP) to create a true backlash-free solution from the motor to the driven load. With up to a 70% reduction in length over standard gearheads, machine designers will appreciate the opportunities available with this space saving product.

Features & Benefits	52
Specifications	53
Selection Process Cycle Determination Stiffness Output Loading Efficiency	55 56–57
Dimensional Drawings	
Life Graphs	60
Input Motor	60
HGP Preloader	61–62

The Nexen Harmonic Gearhead Advantage

Nexen's patent pending Harmonic Gearhead (HG) offers a precision drive solution that overcomes the challenges of existing gearing methods. This new technology eliminates problems with backlash that have plagued the motion control industry, offering reliable precision even when intricate movements are required.

In the tradition of Nexen's entire line of precision motion control products, the Harmonic Gearhead sets new standards with these great features:

- Zero Backlash
- **High Positional Accuracy & Repeatability**
- **Quiet Operation**
- Large, Rugged Cross-Roller Output Bearing
- Compact

HGP

Harmonic Gearhead with Pinion

Save space by taking advantage of Nexen's Harmonic Gearhead with Pinion (HGP).

In this model, the RPS pinion comes fully integrated into the gearhead, creating the only drive solution that maintains zero backlash from the driving motor shaft through to the driven load for both linear and rotary motion.

DRIVING TECHNOLOGY IN ADVANCING MARKETS

Nexen's HG(P) utilizes Harmonic Strain-Wave Technology made up of a circular spline, flex-spline and wave generator. As these components rotate, their unique shape and tooth profile allow 30% of the teeth to be engaged simultaneously for: Smooth Rotation • High Torque • Zero Backlash

The effortless, low-stress meshing of the circular spline and flex-spline teeth results in a long gearhead life with reliable, quiet operation. Some operators call this peace of mind.

Aerospace
Robotics
Semiconductor
Factory Automation
Medical / Surgical

HARMONIC GEARHEAD (HG)

Specifications			HG17				HG25				HG	i32		HG50		
Gear Ratio		50:1	80:1	100:1	120:1	50:1	80:1	100:1	120:1	50:1	80:1	100:1	120:1	80:1	100:1	120:1
Max Acceleration Torque ¹	Nm	35	35	51	51	72	113	140	140	140	217	281	281	675	866	1057
Max Average Torque ¹	Nm	25	30	35	35	51	85	90	90	100	153	178	178	484	611	688
Inertia at Input	kg-cm ²	0.1959	0.1954	0.1952	0.1952	0.7522	0.7503	0.7498	0.7496	2.6294	2.6236	2.6222	2.6215	20.485	20.467	20.457
Backlash	ArcSec		()		0				()			0		
One Way Accuracy	±ArcSec		4	5			45			45					45	
One Way Repeatability	±ArcSec		10			10			10				10			
Weight kg			1.4			2.6			5.2				20.0			
Product Number		969000	969001	969002	969003	969040	969040 969041 969042 969043		969060 969061 969062 969063			969063	3 969100 969101 969102		969102	

HARMONIC GEARHEAD WITH PINION (HGP)

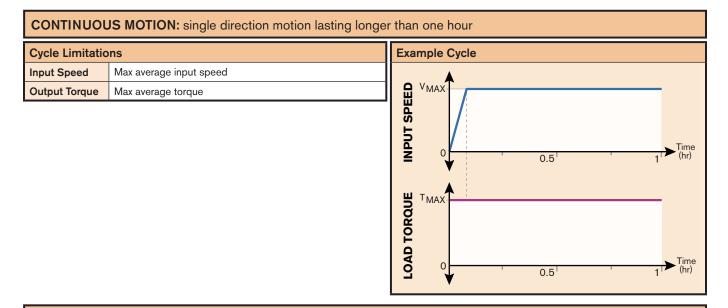
Specifica	ations		HG	P17			HG	P25			HG	P32		I	HGP50)
Integrated Pinio	on Size	RPS16				RPS20				RP	S25		RPS40			
Gear Ratio		50:1	80:1	100:1	120:1	50:1	80:1	100:1	120:1	50:1	80:1	100:1	120:1	80:1 100:1		120:1
Max	Torque (Nm)	35	35	51	51	72	92	92	92	140	159	159	159		458	
Acceleration ¹	Thrust (N)	1374	1374	2003	2003	2262	2900	2900	2900	3519	4000	4000	4000		6000	
	Torque (Nm)	25	30	35	35	51	85	90	90	100	153	159	159		458	
Max Average ¹	Thrust (N)	982	1178	1374	1374	1602	2670	2827	2827	2513	3845	4000	4000		6000	
Inertia at Input	kg-cm ²	0.1971	0.1958	0.1955	0.1954	0.7538	0.7509	0.7502	0.7499	2.6326 2.6248 2.6230 2.6221		2.6221	20.518	20.488	20.471	
Backlash	μm		C)		0			0					0		
One Way Accuracy	± µm		2	5		25			25				25			
One Way Repeatability ± μm		7.5					7.5			7.5				7.5		
Weight kg		1.7			3.0			5.8				24.8				
Product Number		969010	969011	969012	969013	969050	969051	969052	969053	969070 969071 969072 969073			969073	73 969110 969111 969112		969112

GENERAL SPECIFICATIONS FOR BOTH HG & HGP UNITS

Specifica	tions	Size 17	Size 25	Size 32	Size 50					
Marchana Caracili	cyclic RPM	7300	5600	4800	3500					
Max Input Speed ¹	continuous RPM	3650	3500	3500	2500					
Max Average Input Speed ¹	RPM	3650	3500	3500	2500					
Max Input Acceleration Rate rad/sec ²		5100	3900	3350	2450					
Efficiency @ Max Aver (E _{T_max})	age Torque	80% ±5%								
Stiffness, Hysteresis		See Stiffness Section								
Output Loading		See Output Loading Section								
Temperature Limits		Ambient Temperature: 0°C to +40°C Maximum Unit Temperature: < 90°C								
Mounting Position		No Restriction								
Direction of Rotation		Motor Opposite Gearhead								
Lubrication		Lubricated for Life								
Life		See HG & HGP Life Section								

¹ Refer to the *Harmonic Gearhead Selection Process* section for product sizing procedures. Note: All accuracy data taken at 2% of maximum load.

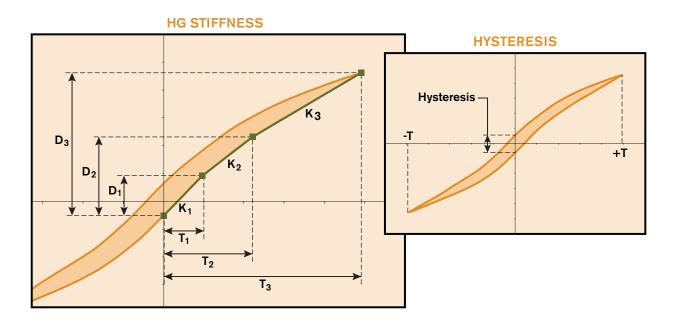
Harmonic Gearhead Selection Process


When selecting the proper Harmonic Gearhead, use the Specifications table to determine the HG/HGP size that best fits the application's torque, speed and physical size requirements. Then, use the following calculation sections to evaluate whether the cycle type, stiffness, efficiency and bearing load capacity of the selected HG/HGP size meets all the application requirements.

HG/HGP Cycle Determination

Correct sizing of the Harmonic Gearhead is critical to the proper function and life expectancy of your unit. The following section provides information regarding cycle type to be used in the gearhead sizing process. The two <u>Cycle Types</u> are: **Continuous Motion &** Cyclic Motion

STEP 1: Determine which Cycle Type applies to your application.


STEP 2: Use the Cycle Limitations information to correctly size the Gearhead.

Cycle Limitatio	ons	Example Cycle							
Input Speed	Time at Max Input Speed ≤ 10 seconds (t_2) Time above Max Average Input Speed ≤ 30 seconds (t_1) Average over any 2 minutes \leq Max Average Input Speed	$ \begin{array}{c} V_{MAX} & \stackrel{t_1}{\swarrow} \\ V_{AVG} & \stackrel{t_2}{\checkmark} \\ V_{AVG} & \stackrel{t_2}{\leftrightarrow} \\ T_{TM} \\ T_$							
Output Torque	Time at Max Acceleration Torque ≤ 10 seconds (t_3)Time above Max Average Torque ≤ 10 secondsAverage over any 2 minutes \leq Max Average Torque								
		TMAX TAVG 0 -TAVG -TMAX							

HG/HGP Torsional Stiffness

Unlike many other gearing types, Harmonic Gearhead stiffness is non-linear. As torque increases, stiffness also increases, as shown in the graph below. NOTE: If you wish to calculate "windup" at torque greater than T1, remember to include the displacement caused by lower stiffness regions.

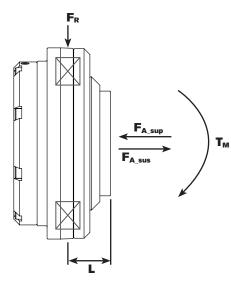
HG AND HGP STIFFNESS DATA

Torsional stiffness is determined by applying a torque to the output of the gearhead while the input is held from rotation. For ease of calculation, the slope of the curve is approximated using three straight lines representing stiffness values K_1 , K_2 , & K_3 .

		Re	ference	Re	f. Disp. (/	ArcMin)	Stiff	ness (Nm	/ArcMin)
		Torc	ue (Nm)		50:1	80:1 +		50:1	80:1 +
Size 17		T ₁	3.9	D ₁	1.66	1.44	K ₁	2.36	2.70
		T_2	T ₂ 8.0		2.94	2.81	K_2	3.20	3.00
L	Si	T₃	35.0	D₃	10.08	10.99	K₃	3.78	3.30
ſ	25	T ₁	14.0	D ₁	2.00	2.12	K ₁	7.00	6.60
	Size :	T_2	48.0	D_2	6.53	6.98	K_2	7.50	7.00
	Si	T ₃	90	D₃	11.20	11.98	K₃	9.00	8.40

	Re	ference	Re	f. Disp. (/	ArcMin)	Stiffness (Nm/ArcMin)				
	Toro	que (Nm)		50:1	80:1 +		50:1	80:1 +		
32	T ₁	52.0	D ₁	3.11	2.81	K ₁	16.70	18.50		
Size (T_2	108.0	D_2	6.06	4.81	K_2	19.00	28.00		
Si	Тз	178.0	D ₃	8.52	6.93	K ₃	28.50	33.00		
50	T ₁	108.0	D1		1.66	K ₁		65.00		
Size (T_2	382.0	D_2	NA	5.81	K_2	NA	66.00		
Si	Тз	688.0	D ₃		10.38	K₃		67.00		

HYSTERESIS


Hysteresis is measured by applying maximum average torque in both directions on the output with the input locked. Typical values are provided in the table to the right.

	Hysteresis	s (ArcSec)	
Size 17	Size 25	Size 32	Size 50
90	90	60	60

HG Output Loading

Harmonic Gearheads come equipped with a cross roller bearing on the output, offering high precision and large, load-carrying capabilities. Use the following information to verify that the selected gearhead meets all application load requirements.

Table 9

Harmonic Gea	rhead	Output Lo	ad Ratings	Table	
	1	HG(P)17	HG(P)25	HG(P)32	HG(P)50
Bearing Constant (C _B)	m-1	31.25	23.81	18.52	11.90
Bearing Center Distance to Flange (L)	m	0.0185	0.0255	0.029	0.0425
Max Axial Suspended Load (F_{A_sus_max)}	Ν	450	1100	1550	4500
Max Axial Supported Load (F_{A_sup_max)}	Ν	10100	11700	19000	45400
Max Radial Load (F_{R_max})	Ν	2220	3180	4220	12200
Max Moment Load (T_{M_max})	Nm	215	335	690	2550
Max Combined Load (P_{c_max})	Ν	6800	7900	12800	30450

Single vs. Multiple Load Direction

SINGLE LOADING DIRECTION

If only one loading direction applies to your application, simply compare the maximum application load with the HG ratings above to ensure that the gearhead is capable of withstanding the application load.

MULTIPLE LOADING DIRECTIONS

When two or more loading directions apply, calculate the combined load using radial, axial and moment load values. Record your application data and perform the calculations on the following page to determine the Combined Load (P_c) of your application. Then compare this value with the Max Combined Load in Table 9 above.

NOTE: Although Combined Load is calculated using average loads, no load should exceed the maximum rated load for that loading direction.

HG Output Loading (continued)

CALCULATING COMBINED LOAD REQUIREMENTS

Refer to the explainations and data on the preceding page to complete the following calculations to determine the combined load requirements of your application.

STEP 1: GATHER APPLICATION DATA

Axial (F_A), Radial (F_R), and Moment (T_M) Loads are application specific. Use the table below to record the average loads that the gearhead will be subjected to during operation.

Application Loads Required for Gearhead Selection	Customer Application Data (record your values below)	Sample Data (HG25)	Sample Application
Average Axial Load (F _A) [Either suspended (F _{A_sus}) or supported (F _{A_sup}), whichever is present in your application]	Ν	1000 N (F_{A_sup})	F _A =1000 N
Average Radial Load (F _R)	N	500 N	0.5 m
Average Moment Load (T _M)	Nm	250 Nm	

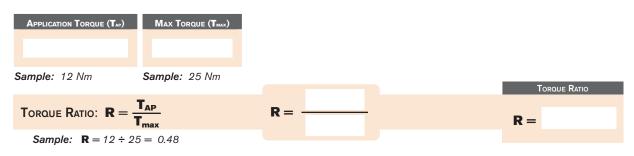
STEP 2: CALCULATE COMBINED LOAD ON BEARING

Calculating a Combined Load simplifies a complex load scenario into a single value that characterizes the application and can be compared to the Maximum Combined Load (P_{C_max}) in the ratings table. Follow the steps below to find the Combined Load that characterizes your application.

Sample: $P_c = (1 \cdot 6452.5 \text{ N}) + (0.45 \cdot 1000 \text{ N}) = 6902.5 \text{ N}$

STEP 3: VERIFY APPROPRIATE HG SIZE

Compare the calculated Combined Load (P_c) value with the Max Combined Load (P_{C_max}) found in Table 9 to verify whether the selected HG size meets your application load requirements. NOTE: Consult Nexen if application subjects the HG output to significant vibrations or impact loading.

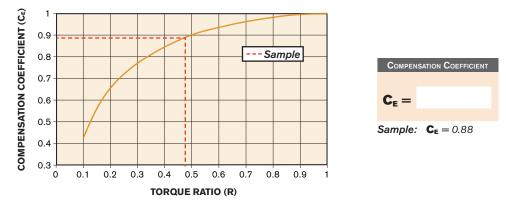

HG / HGP Efficiency

Gearhead efficiency is dependent on many factors, including temperature, speed, torque, and lubrication type. However, the biggest contributor to efficiency loss is running torque, therefore the following calculations focus on your application torque. As is true with any system, efficiency calculations are merely estimations and should be treated as such.

STEP 1: CALCULATE THE TORQUE RATIO

To find the Torque Ratio, divide your application torque by the maximum average torque.

- a. Refer to the HG Specifications Table to find max average torque values.
- b. Determine the torque on which you want to base your efficiency ratings.



STEP 2: FIND THE EFFICIENCY COMPENSATION COEFFICIENT (CE)

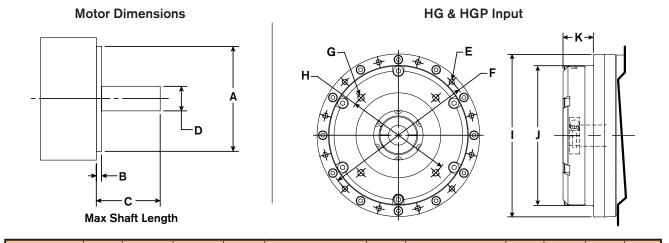
Use the graph below to determine the Compensation Coefficient (C_E).

- a. Mark on the x-axis the Torque Ratio (**R**) value calculated in Step One.
- b. Draw a vertical line from this point until it intersects the curve.
- *c. From the intersection point marked on the curve, draw a horizontal line to the y-axis.*
- d. Record the value at this y-axis intersection point as the Compensation Coefficient (C_E).

EFFICIENCY COMPENSATION COEFFICIENT GRAPH

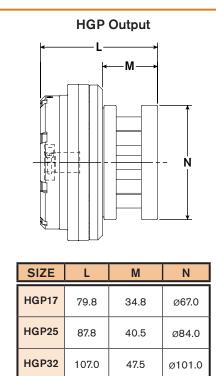
STEP 3: CALCULATE EXPECTED APPLICATION EFFICIENCY

To find the expected efficiency at your application torque, simply multiply the Efficiency Compensation Coefficient (C_E) by the Efficiency at Max Torque (E_{T_max}).


a. Refer to the HG Specifications table to find the E_{T_max} value and record it in the equation below.

				EXPECTED APPLICA	TION EFFICIENCY
Expected Application Efficiency: $\mathbf{E}_{\mathbf{A}} = \mathbf{C}_{\mathbf{E}} \cdot \mathbf{E}_{\mathbf{T}_{max}}$	$\mathbf{E}_{\mathbf{A}} =$	•	%	E _A =	%
Sample: $E_A = 0.88 \cdot 80\% = 70.4\%$					

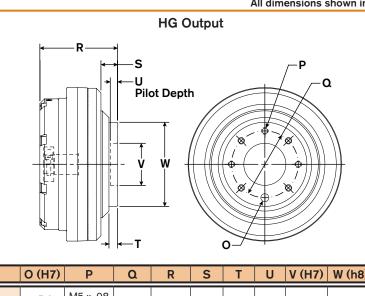
SAMPLE INPUT CONFIGURATION


Input will be configured for user servomotor.

All dimensions shown in mm.

ļ	HG/HGP	Α	В	C (max)	D	E	F	G	н	l (h7)	J (h7)	K
ĺ	Size 17	ø40	1.5 — 2.5	31.0	Ø9.0	M4 x 0.7 (12 holes)	ø86.0	M4 x 0.7 (4 holes)	ø63.0	ø92.0	ø75.0	24.0
	Size 25	ø60	2.0 - 3.0	36.5	ø14.0	M4 x 0.7 (12 holes)	ø107.0	M5 x 0.8 (4 holes)	ø75.0	ø115.0	ø99.0	21.5
	Size 32	Ø80	2.5 - 3.5	48.0	ø19.0	M5 x 0.8 (12 holes)	ø138.0	M6 x 1.0 (4 holes)	ø100.0	ø148.0	ø125.0	29.0
	Size 50	ø130	2.5 - 4.2	64.0	ø32.0	M8 x 1.25 (12 holes)	ø212.0	M10 x 1.5 (4 holes)	ø165.0	ø225.0	ø195.0	41.25

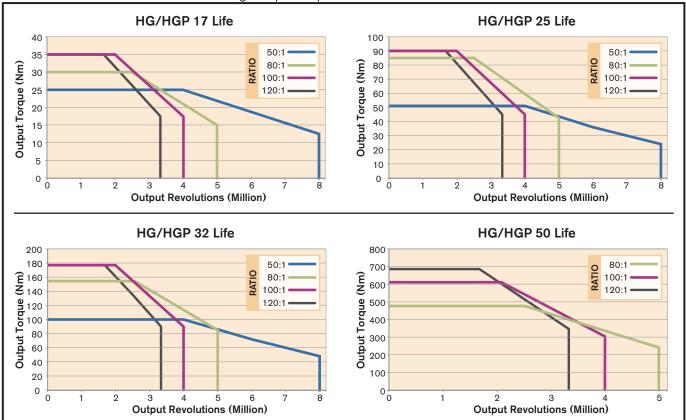
OUTPUT CONFIGURATION



HGP50

179.5

86.5


ø190.0

	O (H7)	Р	۵	R	S	Т	U	V (H7)	W (h8)
HG17	Ø5.0 ↓5.0	M5 x .08 7 Holes	ø31.5	52.0	7.0	6.13	4.0	ø20.0	ø40.0
HG25	Ø6.0 ∓6.0	M6 x 1.0 7 Holes	ø50.0	60.3	13.0	6.5	6.0	ø31.5	ø63.0
HG32	Ø6.0 ↓6.0	M6 x 1.0 11 Holes	ø63.0	74.0	14.5	6.5	6.0	ø40.0	ø80.0
HG50	ø10.0 ∓10.0	M10 x 1.5 11 Holes	ø125.0	108.3	15.3	8.5	8.0	ø80.0	ø160.0

All dimensions shown in mm.

HG & HGP Life

Harmonic Gearhead life is based on average output torque and ratio.

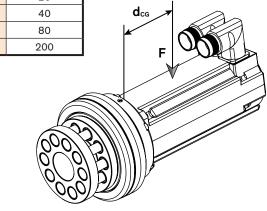
Input Motor Recommendations

Allowable Motor Tilting Torque

Allowable motor tilting torque is defined as the combination of static and dynamic force acting through the motor's center of gravity, multiplied by the distance (d_{CG}) to the HG motor adaptor mounting face.

NOTE: DO NOT subject the input coupling to an overhung load (example: pulley, sheave, etc.).

Input Sealing


A gasket seal is positioned between the motor adaptor and the motor pilot to help seal the HG product from external dust and debris. Be sure to use a properly sized servo motor input flange. A servo motor with an oil seal on the output shaft is recommended.

NOTE: Consult Nexen in the following situations: a) before using a motor with an interrupted pilot; b) applications in which liquids or excessive dust are present and may ingress into the product.

Heat Dissipation

To dissipate heat generated by the motor, Nexen recommends mounting the gearhead to a machine frame or heat sink. Refer to the table at the right for aluminum heat sink plate sizes used in testing by Nexen.

HG(P) Size	Torque (Nm)		
17	20		
25	40		
32	80		
50	200		

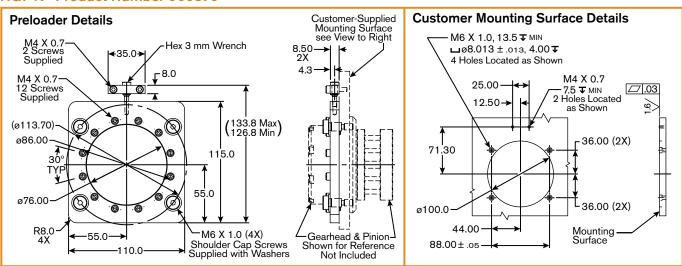
Heat Sink Surface Area (m ²)							
HG(P)17	HG(P)25	HG(P)32	HG(P)50				
0.11	0.14	0.14	0.27				

HGP Preloader

Pair Nexen's Harmonic Gearhead with our HG Preloader for easy integration into your machine design. Preloaders feature an adjuster that allows the HGP to be moved up or down into the rack while keeping the pinion properly oriented to the rack.

Preloader components are made of an alloy steel with a corrosion-resistant nickel finish.

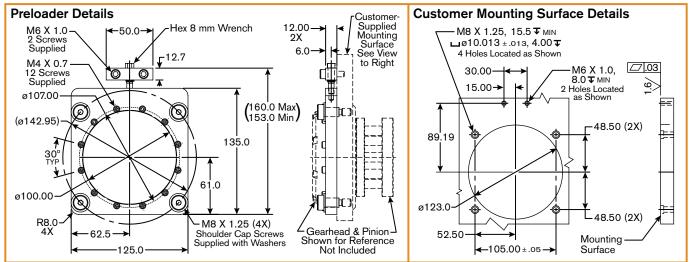
- High-Precision Ground Surfaces
- Allows Perpendicular Movement
- Corrosion Resistant Materials


Preloader

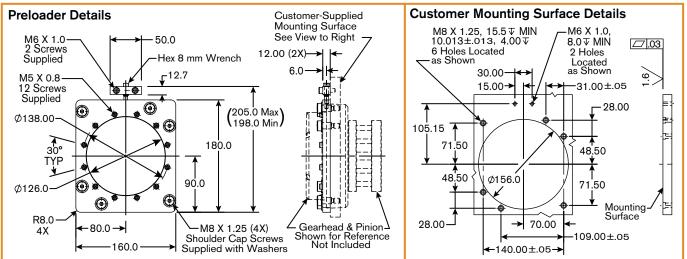
HGP17 Product Number 960870

HGP

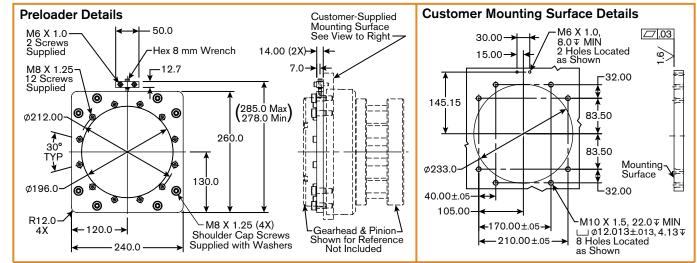
Customer Machine Frame



Harmonic Gearhead Preloader


HGP Preloader Dimensional Drawings (continued)

HGP25 Product Number 960872


All dimensions shown in mm.

HGP32 Product Number 960873

HGP50 Product Number 960875

APPENDIX: UNDERSTANDING THE TECHNOLOGY

The revolutionary technology of Nexen's line of precision motion control products is changing the industry. New standards for precision, efficiency and ease of use are being set. The following section goes even deeper into the performance characteristics of these products. You'll find details about:

ArcSecond Backlash Corrosion Resistance Efficiency Life Rating Lubrication Free Operation Mass vs. Weight Noise Rating Operating Temperature Range Positional Accuracy Series Differentiation Shock Factor

Appendix: Definitions & Notes

ARCSECOND

ArcSecond is a unit of angular measurement equal to 1/3600 of a degree.

BACKLASH

The innovative design of the RPS tooth allows for a zero-backlash drive system. Because zero backlash is impossible to measure, industry standard maintains that anything under 3.2 microns is considered zero.

CORROSION RESISTANCE

Nexen makes no corrosion resistance claims for specific applications but does offer various corrosion countermeasures that include stainless steel and various surface treatments or coatings. Nexen will convey all material and coating specifications, but it is up to the customer to determine application suitability based on this information and/or thorough sample testing.

EFFICIENCY

The RPS system uses needle bearings to support the rollers that engage the teeth. This eliminates the sliding friction found in many other motion control systems and gives it an efficiency greater than 99%. This high efficiency means little is lost to friction, heat, and wear, providing a long life of 60,000,000 pinion revolutions (up to 36 million meters of travel).

LIFE RATING

Pinions: Pinion life is based on L10 of the bearing components. Just like any bearing, environmental conditions will affect life. The product rating is assuming a clean environment with normal manufacturing facility temperatures.

Pinion performance tends to be constant over its life with a rapid deterioration at the end of life as the needle bearings supporting the rollers fail.

Racks & Gears: The rack and gears have their own specific life ratings depending on model, and in some cases RPS size, and is based on tooth contacts at allowed loads and speeds. The combined pinion and rack or gear that makes up a given RPS or RPG system will have the combined life of the lower-rated component and will be greatly effected by machine design, RPS or RPG installation, operating patterns, and receiving recommended lubrication intervals while operated in a clean, dry, 20° C environment.

Rack wear is relatively linear over its life. Application and environmental conditions and lubrication intervals will impact expected product life. Depending on the length of the rack or diameter of the gear and usage patterns, it is often possible to replace the pinion several times, restoring full system performance before the rack or gear would need replacement if the pinion is replaced before reaching the point where its failure starts damaging rack or gear teeth.

LUBRICATION FREE OPERATION

In some cases the RPS rack can be operated without lubrication on the rack teeth or pinion rollers. This is dependent on the specific rack model and the maximum speed being less than 30 m/min. The no-lubrication option generally applies to rack that has received a surface treatment and does not apply to bare steel models of rack or any gearing. See specifications for the specific rack model you are considering to know if this is possible.

Operating without tooth/roller lubrication will reduce tooth life but can be beneficial in food, pharmaceutical, clean room, and other applications where the grease could contaminate the environment, or applications with high levels environmental contaminates that would be attracted to the grease and accelerate the wear rate. Nexen can not calculate a life rating when running without lubrication due to the number of variables that impact life, but based on past experience, the reduction has been modest and far exceeds other mechanical drive alternatives.

MASS VS. WEIGHT

Mass is the quantity of matter contained in an object, while weight is the force by which the object is pulled to the earth due to gravity. Therefore, in this literature, mass is shown in kilograms (kg) and weight is shown in kilograms force (kgf).

NOISE RATING

The RPS system is nearly silent at low speeds and typically less than 75 dB at full speed. This is dependent on machine design, proper RPS installation, whether lubrication is used or not, and is difficult to isolate from other drive train and guiding system noise, so your results may vary.

OPERATING TEMPERATURE RANGE

This is the range that the RPS system will function in. Accuracy specifications are based on 20° C and thermal expansion/contraction will effect the accuracy of the RPS system. It is recommended the RPS system be installed at the highest temperature the system will be operated at and avoid wide temperature swings for maximum accuracy and performance.

For applications outside of this temperature range, or with wide temperature swings, contact Nexen for more information.

POSITIONAL ACCURACY

This is dependent on proper machine design and RPS product installation. Positional accuracy is measured at 20° C and subject to variations due to mounting surface irregularities, rigidity, installation accuracy, proper maintenance, and ambient temperature. To be conservative, the RPS rack transmitting accuracy has been rounded up to the next $\pm 10 \mu m$. Other rack positional accuracy specifications have been rounded up to the next $\pm 5 \mu m$. For RPG gearsets, the angular accuracy rating is increased (less accurate) by 5% and then rounded to the next whole number, except in the case of very large gears where rounding may be fractional. This allows customers to achieve Nexen accuracy ratings with reasonable effort. Higher performance can be obtained if machine design and tolerances are optimized.

SERIES DIFFERENTIATION

The RPS and RPG pinions, racks and gears have been made in different series (thicknesses) depending on the specific product and should not be mixed when matching a pinion to a given rack or gear. All current pinions, racks and gears are B-series. Series A pinions (discontinued) are interchangeable with C-series pinions (discontinued) and have a wider body with longer rollers than the B-series pinions. The current rack and gear products only use B-series pinions, and the previous gears could use either depending on the RPG size. B-series pinions will not physically fit on a C-series gear, and a C-series pinion would be compromised if used on a B-series rack or gear due to a higher bending moment on the rollers, which would reduce their lives.

SHOCK FACTOR

Shock Factor is a value given to represent the smoothness of operation. Accommodating for Shock Factor when calculating system requirements ensures more accurate product selection.

CUTTING SYSTEMS GANTRY SYSTEMS MEDICAL PRODUCTS ROBOTICS AEROSPACE MACHINE TOOL SEMICONDUCTOR MATERIAL HANDLING

www.nexengroup.com

In accordance with Nexen's established policy of constant product improvement, the specifications contained in this document are subject to change without notice. Technical data listed in this document are based on the latest information available at the time of printing and are also subject to change without notice. For current information, please consult www.nexengroup.com or contact Nexen's Technical Support Group at the location to the right.

Nexen Group, Inc. 560 Oak Grove Parkway Vadnais Heights, MN 55127 (800) 843-7445 Fax: (651) 286-1099 www.nexengroup.com

Nexen has sales offices throughout the United States, Europe, Japan, and Australia.