Heavy-duty Rod ends and Spherical bearings from HIRSCHMANN

Rod ends and Spherical bearings

- A million times proved
- In sizes 2 up to 50 mm
- Acc. to DIN ISO 122404 (DIN 648K) and Catop
- Maintenance free or Relubricatable
- Hard cromed or stainless steel, sealed
- Specials to customer requirements

Standard products
HIRSCHMANN's rod ends and spherical bearings are bearing elements which can be used for many applications, and are of the plain bearing type. They have proved their worth in millions of instances as a design element for transmitting power between members lying at various angles, both statically and dynamically. The mounting dimensions of these bearing elements have been fixed in DIN ISO 12240-4 (648 K). This catalogue reflects the current state of development and manufacture, and the information contained in it supersedes earlier publications. We reserve the right to make modifications in the course of product development. Reprints and excerpts require our express permission.

Standard products:
For all the standard products shown in this catalogue, many variations are possible. Details are given in the text below the tables of dimensions, e.g. hard-chromed or rustproof inner ring or outer part, reduced bearing slackness etc.

Specials:
In addition to our standard products, we make specials to customer requirements or to drawing. Examples of our specials are shown on the rear cover of the catalogue.

Warranty:
All the information contained in this catalogue is the result of years of experience in the manufacture and use of rod ends and spherical bearings. Nevertheless, unknown parameters and practical conditions of use can considerably reduce the validity of these general statements, so that the user must conduct practical tests. The multitude of applications for rod ends and spherical bearings mean that we cannot accept any liability for the correctness of our recommendations in individual instances.

Quality according to EN 9100
All HIRSCHMANN GMBH rod ends and spherical bearings are produced using the latest and most reliable production methods, and are subject to quality assurance measures as per EN 9100 (air and space industry) both during production and in the product stage.

Advisory service and sales:
Our staff and the sales engineers at our agencies and dealers in Germany and abroad, all of whom have their own stocks, would be pleased to assist you at any time.
This is only a part of various special products which we are manufacturing according to customer requirements or customer drawings.
<table>
<thead>
<tr>
<th>Construction</th>
<th>Series</th>
<th>Design features</th>
<th>Application features</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFC. SMC. SSC.</td>
<td>Relubricatable heavy-duty design, rod ends and spherical bearings</td>
<td>Universal application at high alternating and shock loads in radial and axial directions. Suitable for large swings.</td>
<td>12–13 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friction pairing: Steel/heavy-duty bronze, with precision-turned bushing having extremely high lining adjustment capability.</td>
<td>V_{\text{max}} = 60 \text{ m/min}.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFCP. SMCP. SSCP.</td>
<td>Maintenance free heavy-duty, rod ends and spherical bearings</td>
<td>Universal application at high constant loads and low alternating and shock loads in axial and radial directions. For difficult lubrication conditions, high running speeds and large swings.</td>
<td>14–15 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friction pairing: Steel/PTFE bronze fabric. The sliding film is affixed inside the bushing. This ensures long service life.</td>
<td>V_{\text{max}} = 60 \text{ m/min}.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFC. CETOP SFCP. CETOP</td>
<td>CETOP-standard relubricatable or maintenance-free heavy-duty rod ends</td>
<td>As for relubricatable or maintenance-free heavy-duty rod ends and spherical bearings.</td>
<td>16–17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friction pairing: Steel/heavy-duty bronze Steel/PTFE bronze fabric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC. SCP.</td>
<td>Relubricatable or maintenance-free heavy-duty spherical bearings without steel outer ring</td>
<td>As for relubricatable or maintenance-free heavy-duty rod ends and spherical bearings.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friction pairing: Steel/heavy-duty bronze Steel/PTFE bronze fabric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..2 RS</td>
<td>Sealed rod ends, spherical bearings</td>
<td>For use in severe environmental conditions (dirt, dust, splashing water, etc.)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heavy-duty and maintenance-free rod ends and spherical bearings of sizes 8–30 can be supplied with replaceable sealing sleeves.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..W</td>
<td>Threaded bolts for rod ends and spherical bearings</td>
<td>Used as angle joints</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heavy-duty and maintenance-free rod ends and spherical bearings of sizes 5–16 and 20 can be supplied ex stock with a down riveted threaded bolt.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Notes

Bearing slackness:
Bearing slackness or bearing clearance is the dimension by which the inner ring can be moved within the bushings in a radial or axial direction when not installed and unlubricated. Rod ends and spherical bearings are manufactured with differing bearing slackness, as shown in the following charts, depending on the friction pairing and the size of the bearing. When mounting bearings, please note that the slackness can be reduced to null if necessary, due to possible differences in tolerance (bearing diameter to housing bore hole).

The test load is 100 N.

Bearing slackness in lubricated design
(at room temperature)

<table>
<thead>
<tr>
<th>Size</th>
<th>C2</th>
<th>Normal</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>2 - 4</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>5 - 8</td>
<td>5</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>10 - 14</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>16 - 20</td>
<td>15</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>22 - 30</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>35 - 50</td>
<td>40</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Fig. 1

Bearing slackness in maintenance-free design
(at room temperature)

<table>
<thead>
<tr>
<th>Size</th>
<th>C2</th>
<th>Normal</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>2 - 4</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5 - 30</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>35 - 50</td>
<td>-</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Fig. 2

The axial slackness is 2 to 3 times the radial slackness under the same test load (measured at room temperature).

Selection of bearing slackness:

Lubricated design
If there are no special reasons for a reduced bearing slackness according to C2, the “Normal” radial slackness must be selected as it offers the best lubricating grease distribution with a high bearing contact area. All rod ends and spherical bearings are supplied with “Normal” radial slackness unless otherwise ordered.

Maintenance-free design
These bearings are remarkable for their low bearing slackness and a high contact area ratio. Unless otherwise ordered, the maintenance-free rod ends are supplied with “Normal” radial slackness.
If the overall friction movement should be kept low when several rod ends or spherical bearings are used, bearings with a radial slackness in accordance with C3 should be used also.

Consideration of the environment:
It is recommendable to apply a stainless or sealed type when using it in a humid environment. Accordingly to the individual customer’s requirements, the bearings are delivered in the following special designs: stainless and acid-proof, high temperature-proof, low temperature-proof etc.

Lubrication:
All relubricatable rod ends and bearings are supplied ungreased. We recommend lubrication with an anticorrosive Lithium-based pressure-resistant grease or a Lithium-complex metal soap (multipurpose antifriction bearing grease) for the temperature range of -20 °C to +125 °C. For temperatures above 125 °C a high temperature grease must be used and for temperatures below -20 °C a low temperature grease must be used.

Initial lubrication and relubrication, lubrication intervals
Under severe conditions and at high load, a temperature check is recommended shortly after commissioning. If a temperature rise of 25 °C occurs after a running-in time of approx. 1 hour of operation, immediate lubrication is necessary. A periodical relubrication is necessary in any event.
Rod ends and spherical bearings under alternate load from both sides require shorter intervals between lubrication than rod ends and spherical bearings under load from one side only. The lubrication intervals depend on the individual circumstances and on the surrounding conditions.
The following guideline values apply for the minimum lubricating periods:

With load from one direction
\[t = \frac{G_n}{30} \]

With load from alternating directions
\[t = \frac{G_n}{130} \]

\(t \) = lubricating period in hours of operation.
\(G_n \) = duration of use in hours of operation (see page 9).

Lubricating more often does not have any advantages, furthermore it can damage the hydrodynamic balance on the sliding surface.
If the lubricating periods are not observed, the service life can decrease.
The rod ends with female thread are equipped from size 5 upwards with funnel-type lubricating nipples DIN 3405, those with thread from size 6 upwards. We can supply other lubricating nipples on request.
During the running-in time of the maintenance-free types only a small part of the PTFE is transferred from the sliding foil to the inner ring. Hereby a smoothing effect arises. This reduces the friction and leads to the longer durability. A greasy or oily film prevents this smoothing effect. Thus, we recommend using these elements without lubrication.
Operating temperature:
All designs can be used without restriction in a temperature range from −30 °C to +120 °C. Increasing the operating temperature reduces the bearing power and, thus, the service life.

Operation at high temperature of relubricatable rod ends and spherical bearings depends to a very great extent on whether the high-temperature lubricating grease used offers sufficient lubricity at high operating temperatures. These designs could be used in the short term under low load and with suitable lubrication at temperatures up to +250 °C.

The maintenance-free bearings can be used in a temperature range from −50 °C to +150 °C (mind the decrease or the increase of bearing slackness).

Sealed rod ends and spherical bearings can be used at temperatures from −20 °C to +120 °C (sealing sleeves of Perbunan). For higher temperatures up to +250 °C sealing sleeves can be specially made from fluorelastomer rubber (Viton®).

Moment of friction M:
The moment of friction for rod ends and spherical bearings can be calculated using the following equation:

\[M = 5 \cdot 10^{-4} \cdot \mu \cdot P \cdot K \]

M = moment of friction [Nm]
\(\mu \) = friction coefficient of sliding surface
P = dynamically equivalent bearing load [N]
K = inner ring diameter [mm]

Guideline values for the friction coefficient \(\mu \)

<table>
<thead>
<tr>
<th>Bearing type</th>
<th>Friction coefficient (\mu) [min]</th>
<th>Friction coefficient (\mu) [max]</th>
</tr>
</thead>
<tbody>
<tr>
<td>lubricated</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>maintenance-free</td>
<td>0.03</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The low friction coefficients apply for high loads (\(p = 80–100 \text{ N/mm}^2 \)) at low running speeds (\(v = 5–10 \text{ m/min} \)). The high friction coefficients are for low loads (\(p = 5–10 \text{ N/mm}^2 \)) at high running speeds (\(v = 30–60 \text{ m/min} \)).

\(p \) = specific surface pressure [N/mm²]
\(v \) = running speed in the lining [m/min]

Viton® is a registered trademark of Du Pont Performance Elastomers.

Bearing capacities:

The dynamic bearing capacity \(C \):
The dynamic bearing capacity \(C \) is a characteristic value for the calculation of the service life of rod ends and spherical bearings under dynamic load, i.e., having to perform tilting, swinging or pivoting movements under load.

The dynamic bearing capacity \(C \) is based on the values given in the table for the specific surface pressure \(k_c \).

<table>
<thead>
<tr>
<th>Type of bearing</th>
<th>Specific surface pressure (k_c) [N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>lubricated</td>
<td>50</td>
</tr>
<tr>
<td>maintenance-free</td>
<td>150</td>
</tr>
</tbody>
</table>

The static bearing capacity \(C_s \):
The static bearing capacity \(C_s \) represents the maximum permissible load at which no permanent deformation of the lining or the outer part occurs. In the case of the spherical bearing, the surrounding components must be so designed that they prevent any deformation of the bearing.

In the case of rod ends, \(C_s \) corresponds to the permissible load based on the weakest cross-section which results form the yield point of the outer material, with a safety factor of 1.2.

The ultimate load is at least 1.5 the permissible \(C_s \) load.

The axial load-bearing capacity:
The axial load-bearing capacity of the rod ends and the spherical bearings is limited by the axial fixing of the bushing (flanged) in the outer part.

In the case of spherical bearings without steel outer ring (types SC.. and SCP..), it must be ensured that the axial bushing support can absorb the forces given in the table (Fig. 5) both statically and dynamically.

The maximum permissible axial load is calculated on the basis of the values given in the table.
Checking bearing size:

To check a bearing size with regard to its static and dynamic load-bearing capacity, the bearing must be investigated to the following criteria:

- Constant dynamic load
- Variable dynamic load
- Static load

The equivalent bearing loads are calculated from F_r and F_a.

Dynamic load:

The inner ring carries out a swinging or pivoting movement in relation to the bushing.

![Diagram](image)

Constant dynamic load:

The dynamically equivalent bearing load P for rod ends and spherical bearings with constant dynamic loads is calculated as follows:

$$ P = F_\text{r} + Y \cdot F_\text{a} $$

It is necessary that: $F_\text{a} \leq F_{\text{a,perm}}$.

(Fig. 5)

The axial factor Y is taken from the following table (Fig. 7). Intermediate values can be interpolated linearly.

<table>
<thead>
<tr>
<th>Load-relation F_a / F_r</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>> 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial factor Y</td>
<td>0.8</td>
<td>1</td>
<td>1.5</td>
<td>2.5</td>
<td>3</td>
<td>not suitable</td>
</tr>
</tbody>
</table>

(Fig. 7)

Using the calculated value for P, the load ratio $f_\text{c} = \frac{P}{F_\text{r}}$ is formed and compared with the values in the table (Fig. 8). The bearing is overloaded if a value below the limit value is obtained.

P is also required for calculation of the service life.

<table>
<thead>
<tr>
<th>Type of bearing</th>
<th>f_c (lower limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricated</td>
<td>0.5</td>
</tr>
<tr>
<td>Maintenance-free</td>
<td>1.0</td>
</tr>
</tbody>
</table>

(Fig. 8)

Variable dynamic load:

For rod ends and spherical bearings with variable radial dynamic load, the mean dynamic bearing load F_m from the individual load steps $F_2, F_3, ..., F_\text{n}$ and the corresponding time components $q_1, q_2, ..., q_\text{n}$ for instance for three load steps, are calculated as follows: (Fig. 9)

$$ F_\text{a} = \sqrt{\frac{F_2^2 \cdot q_1 + F_3^2 \cdot q_2 + F_\text{n}^2 \cdot q_\text{n}}{q_0}} $$

The dynamic bearing load is:

$$ P = F_\text{m} $$

If there is also a constant axial load acting, P is calculated as follows:

$$ P = F_\text{m} + Y \cdot F_\text{a} $$

In addition, F_{max} must be checked for static safety.

$$ F_{\text{max}} \leq F_{\text{a,perm}} $$

For P_{perm}, see “Permissible load”.

Static load:

The inner ring is stationary in relation to the bushing.

![Diagram](image)

For rod ends and spherical bearings with static load, the statically equivalent bearing load P_0 is calculated as follows:

$$ P_0 = F_\text{r} + Y \cdot F_\text{a} $$

It is necessary that: $F_\text{a} \leq F_{\text{a,perm}}$.

The axial factor Y is taken from the table (Fig. 7). P_0 must be $\leq P_{\text{perm}}$. See “Permissible load” for P_{perm}.

Permissible load P_{perm}:

- Rod ends: $P_{\text{perm}} = C_0 \cdot b_2 \cdot b_4$
- Spherical bearings: $P_{\text{perm}} = C_0 \cdot b_2$

P_{perm} = permissible load

C_0 = static bearing capacity

b_2 = temperature factor from table (Fig. 12)

b_4 = load factor from table (Fig. 11)
The values written in brackets are valid for rod ends with male threads and lubricating nipples or lubrication holes.

It is necessary that:

\[P \leq P_{\text{perm}} \quad \text{and} \quad P_s \leq P_{\text{perm}} \]

Service life:
The service life of a rod end or spherical bearing is a function of several factors, some of which are difficult to determine. A precise calculation is therefore not possible. The calculation method following, which has been proved correct in many test stand trials, gives a relatively accurate result for the service life. Influences as shocks, vibrations, soiling etc. are not taken into consideration. This calculation is based on a total abrasion of the linings of 0.3% of the diameter of the inner ring. The coefficient of the sliding friction of the linings increases of about 0.25.

\[G_n = \frac{b_3 \cdot b_5 \cdot b_6 \cdot 10^7 \cdot C}{K \cdot \beta \cdot f} \]

\[G_n = \text{service life} \quad [\text{h}] \]

\[C = \text{dynamic bearing capacity} \quad [\text{N}] \]

\[P = \text{dynamic equivalent bearing load} \quad [\text{N}] \]

\[K = \text{inner ring diameter} \quad [\text{mm}] \]

\[\beta = \text{swing angle} \geq 1 \quad [\text{degrees}] \]

(by pivoting movements \(\beta = 180^\circ \))

\[f = \text{swing frequency} \quad [\text{rpm}] \]

\[b_3 = \text{load direction factor (Fig. 12)} \]

\[b_5 = \text{temperature factor (Fig. 12)} \]

\[b_6 = \text{material factor (Fig. 13)} \]

Guideline values for the permissible \(p \cdot v \) value

<table>
<thead>
<tr>
<th>Bearing type</th>
<th>Load direction factor (b_1)</th>
<th>Temperature factor (b_5)</th>
<th>Temperature (^\circ \text{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Load direction factor (b_1)</td>
<td>Alternation direction (b_2)</td>
<td>80</td>
</tr>
<tr>
<td>lubricated</td>
<td>1</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>maintenance-free</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
</tr>
</tbody>
</table>

If the required service life is not obtained, repeat this calculation with next bearing size up.

Checking of linings for overheating:
Permissible running speed:
The permissible running speed is largely a function of the surface exerted, the friction pairing, the lubrication and cooling if applicable. The heat building up in the bearing is proportional to the product of surface pressure and running speed. When checking the bearing size, therefore the \(p \cdot v \) value must be determined and compared with the permissible value (Fig. 14). The bearing running speed must also be checked.

To avoid overheating, the following is necessary:

\[p \cdot v \leq (p \cdot v)_{\text{perm.}} \]

\[v \leq v_{\text{perm.}} \]

\[p = \text{surface pressure} = k_s \cdot \frac{P}{C} \quad [\text{N/mm}^2] \]

\[k_s = \text{specific surface pressure} \quad [\text{N/mm}^2] \]

\[v = \text{mean running speed} = 1,745 \cdot 10^{-3} \cdot K \cdot \beta \cdot f \quad [\text{m/min}] \]

Very low loads or running speeds result in a relatively high arithmetic service life. In practice, with a longer service life, environmental influences can acquire importance and lead to an error in the results.
Determning of the bearing size

Lubricated design

The insertion of the relative service life \(G_h \) as auxiliary quantity enables a correlation between the relative service life and the dynamically equivalent bearing load to be represented graphically.

\[
\bar{G}_h = G_h \cdot \frac{\beta \cdot f}{b_1 \cdot b_2}
\]

applies for the relative service life:

- \(\bar{G}_h \) = relative service life [h]
- \(G_h \) = required service life [h]
- \(\beta \) = swing angle [degrees]
- \(f \) = swing frequency [min⁻¹]
- \(b_1 \) = load direction factor (Fig. 12)
- \(b_2 \) = temperature factor (Fig. 12)

Example:
A rod end with male thread is required for the following operating conditions:
- Alternating dynamic load \(F_t \) 1200 N
- Swing angle \(\beta \) 30°
- Swing frequency \(f \) 120 rpm
- Operating temperature 50° C
- Required service life \(G_h \) 7000 h

Since the load is alternating, a lubricated design is recommended, as set forth in the “Selection” section (page 5). Thus, Fig. 12 gives \(b_2 = 2.5 \) and \(b_2 = 1 \).

Dynamically equivalent bearing load:
\(P - F_t = 1200 \) N

Relative service life:
\[
\bar{G}_h = G_h \cdot \frac{\beta \cdot f}{b_1 \cdot b_2} = 7000 \cdot \frac{30}{2} \cdot \frac{120}{5} \cdot 1 = 10.08 \cdot 10^6 \text{ h}
\]

The intersection in Fig. 15 with \(P = 1200 \) N and \(\bar{G}_h = 10.08 \cdot 10^6 \) h results in the bearing size 12. Thus, SMC 12 is chosen.

Checking the rod end SMC 12 with regard to the permissible load \(P_{perm} \) and the service life \(G_h \), and checking the lining for overheating and determination of the lubricating intervals is conducted as shown in Example 1, page 11.

The example given in Fig. 16 is the result of the 2nd calculation example on page 11.
Calculation examples

Example 1:
The conveying lever on a packaging machine is to be moved via a rod end. The design calls for a size 12 rod end.
Values dictated by design:
- Alternating constant dynamic radial load \(F_r \) 1200 N
- Swing angle \(\beta \) 30°
- Swing frequency \(f \) 120 rpm
- Operating temperature 50° C
Since the load is alternating and constant, a lubricated design is recommended according to the section “Selection” (page 5), e.g. SMC 12.
Catalogue values:
- Dynamic bearing capacity \(C \) 13400 N
- Static bearing capacity \(C_0 \) 17000 N
- Inner ring \(\varnothing K \) 22.225 mm

Requirements on rod end SMC 12:
1. Radial load \(F_r \) must be smaller than the permissible load \(P_{perm} \) to avoid permanent deformation.
2. The service life \(G_{h, req} \) should be at least 6000 operating hours.

Calculation:
- Dynamically equivalent bearing load \(P \):
 \(P = F_r + Y \cdot F_s \)
 \(F_s = \frac{F_r}{1200} - 0 \mid Y = 0 \)
 \(P = F_r = 1200 N \)
- Permissible rod end load \(P_{perm} \):
 \(P_{perm} = C_0 \cdot b_2 \cdot b_4 \mid b_2 = 1.35 \) (acc. to Fig. 12)
 \(b_4 = 0.35 \) (acc. to Fig. 11)
 \(P_{perm} = 17000 \cdot 1.35 \cdot 0.35 = 6950 N \)
 \(P = 1200 N < P_{perm} = 5950 N \) (1st requirement met)

Determination of service life \(G_h \):
\[
G_h = \frac{b_2 \cdot b_4 \cdot b_4}{K \cdot \beta \cdot f} \cdot 10^7 \cdot \frac{C}{P} \text{ [h]}
\]
- \(b_2 = 2.5 \) (Fig. 12)
- \(b_4 = 1 \) (Fig. 12)
- \(\beta = 25 \) (Fig. 12)
- \(f = 60 \) (Fig. 12)
- \(\frac{C}{P} = \frac{13400}{1200} = 111 \)
\[
G_h = 7200 h > G_{h, req} = 7000 h \) (2nd requirement met)

Checking of lining for overheating:
\[
p = \frac{k_s \cdot P}{C} \text{ [N/mm²]}
\]
- \(k_s = 50 N/mm² \) (acc. to Fig. 4)
 \(P = 1200 \)
 \(C = 13400 \)
- \(p = 50 \cdot 0.089 N/mm² = 4.45 N/mm² \)
\[
v = 1745 \cdot 10^3 \cdot K \cdot \beta \cdot f = 1745 \cdot 10^3 \cdot 22.225 \cdot 30 \cdot 120 m/min
\]
- \(v = 1.4 m/min < v_{perm} = 15 m/min \) (acc. to Fig. 14)
- \(p \cdot v = 4.45 \cdot 14 = 62.3 < (p \cdot v)_{perm} = 30 \) (Fig. 14)

No overheat

Lubrication interval:
\[
t = \frac{G_h}{130} = \frac{7200}{130} = 56 h
\]

Example 2:
A lever of a filling machine is moved via a double-action pneumatic cylinder. A maintenance-free rod end with mounting dimensions to CETOP is required.
Values dictated by design:
- Variable, pulsating, radial, dynamic load
 - \(F_1 = 2000 N \), \(F_2 = 6000 N \), \(F_3 = 3000 N \), \(F_{max} = 8000 N \)
 - \(q_1 = 20\% \), \(q_2 = 15\% \), \(q_3 = 65\% \)
- Constant axial load \(F_a \) 1000 N
- Swing angle \(\beta \) 25°
- Swing frequency \(f \) 60 rpm
- Operating temperature max. 80° C
Requirements on rod end:
1. The dynamically equivalent bearing load \(P \) and the statically equivalent bearing load \(P_0 \) must be lower than the permissible load \(P_{perm} \).
2. The service life \(G_{h, req} \) must be at least 11000 operating hours.

Calculation:
- Mean dynamic bearing load \(F_m \):
 \(F_m = \sqrt{\frac{F_1^2 \cdot q_1 + F_2^2 \cdot q_2 + F_3^2 \cdot q_3}{2}} = 1000 N \)
- Dynamically equivalent bearing load \(P \):
 \(P = F_m + Y \cdot F_s \)
 \(F_s = \frac{F_m}{1000} = 0.28 \)
 \(Y = 1.44 \) (interpolated acc. to Fig. 7)
 \(P = 3471 + 1.44 \cdot 1000 = 4911 N \)
- Determination of relative service life \(G_{h, rel} \):
 \(G_{h, rel} = \frac{\beta \cdot f}{b_4 \cdot b_2} \)
 \(b_2 = 1 \) (Fig. 12)
 \(b_4 = 1 \) (Fig. 12)
 \(\beta = 25 \) (Fig. 12)
 \(f = 60 \) (Fig. 12)
 \(G_{h, rel} = 11000 \cdot \frac{25 \cdot 60}{1 \cdot 1} = 16.5 \cdot 10^6 h \)

On the basis of the chart (Fig. 16) the rod end size calculated is 16;
- SFCP 16 CETOP is selected (page 17).
- Dynamic bearing capacity \(C \) 60000 N
- Static bearing capacity \(C_0 \) 28500 N
- Inner ring \(\varnothing K \) 28.575 mm
- Limit value \(t = \frac{C}{P} = 60000 \)
 \(C = 4911 \)
 \(P = 12.2 \) (correct acc. to Fig. 8)

Permissible rod end load \(P_{perm} \):
\[
P_{perm} = C_0 \cdot b_2 \cdot b_4 \mid b_2 = 1 \) (Fig. 12)
 \(b_4 = 0.5 \) (Fig. 11)
 \(P_{perm} = 28500 \cdot 0.5 = 14.250 N \)
\[
P_a = F_{max} = 8000 N < P_{perm} \)
 \(P = 4911 N < P_{perm} \)

Determination of service life \(G_h \):
\[
G_h = \frac{b_2 \cdot b_4 \cdot b_3}{K \cdot \beta \cdot f} \cdot 10^7 \cdot \frac{C}{P} \mid b_3 = 4.2 \) (Fig. 12)
 \(b_4 = 1.4 \)
\[
G_h = 28575 \cdot 25 \cdot 60 = 11900 h
\]
\[
G_{h, req} = 11000 h > G_h = 11900 h \) (2nd requirement met)
Relubricatable heavy-duty rod ends with female thread
Friction pairing steel on heavy-duty bronze

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>B</th>
<th>C</th>
<th>d₁</th>
<th>d₂</th>
<th>H₁</th>
<th>H₂</th>
<th>H₃</th>
<th>G₁</th>
<th>K</th>
<th>Ball dia Ø</th>
<th>G</th>
<th>Thread</th>
<th>SW</th>
<th>Bearing capacities</th>
<th>Angle of misalignment</th>
<th>Weight each</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFC..</td>
<td>2</td>
<td>4</td>
<td>4,8</td>
<td>3,6</td>
<td>3,6</td>
<td>9</td>
<td>3,8</td>
<td>4,5</td>
<td>16</td>
<td>20,5</td>
<td>2,5</td>
<td>7</td>
<td>6,000</td>
<td>M2</td>
<td>4</td>
<td>900</td>
<td>1900</td>
</tr>
<tr>
<td>SFXC..</td>
<td>3</td>
<td>6</td>
<td>4,5</td>
<td>5,1</td>
<td>12</td>
<td>5</td>
<td>6,5</td>
<td>21</td>
<td>27</td>
<td>3</td>
<td>10</td>
<td>7,937</td>
<td>M3</td>
<td>5,5</td>
<td>1500</td>
<td>3600/2200</td>
<td>--</td>
</tr>
<tr>
<td>SFR..</td>
<td>4</td>
<td>7</td>
<td>5,25</td>
<td>6,5</td>
<td>14</td>
<td>6</td>
<td>8,5</td>
<td>24</td>
<td>31</td>
<td>3,5</td>
<td>12</td>
<td>9,520</td>
<td>M4</td>
<td>7</td>
<td>2,260</td>
<td>4500/2700</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>7,7</td>
<td>18</td>
<td>9</td>
<td>11</td>
<td>27</td>
<td>36</td>
<td>4</td>
<td>10</td>
<td>11,112</td>
<td>M5</td>
<td>9</td>
<td>3,250</td>
<td>6000</td>
<td>15000</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>6,75</td>
<td>8,9</td>
<td>20</td>
<td>10</td>
<td>13</td>
<td>30</td>
<td>40</td>
<td>5</td>
<td>12,700</td>
<td>M8</td>
<td>11</td>
<td>4,300</td>
<td>7000</td>
<td>16500</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>12</td>
<td>9</td>
<td>10,4</td>
<td>12,5</td>
<td>16</td>
<td>36</td>
<td>48</td>
<td>5</td>
<td>16,575</td>
<td>M8</td>
<td>14</td>
<td>7,200</td>
<td>12000</td>
<td>26000</td>
<td>13</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>14</td>
<td>10,5</td>
<td>12,9</td>
<td>28</td>
<td>19</td>
<td>19</td>
<td>43</td>
<td>57</td>
<td>6,5</td>
<td>20,10,50</td>
<td>M10</td>
<td>17</td>
<td>10000</td>
<td>14500</td>
<td>35000</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>15,4</td>
<td>32</td>
<td>17,5</td>
<td>22</td>
<td>50</td>
<td>66</td>
<td>6,5</td>
<td>22,222</td>
<td>M12</td>
<td>19</td>
<td>13400</td>
<td>17000</td>
<td>43000</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>19</td>
<td>13,5</td>
<td>16,8</td>
<td>36</td>
<td>20</td>
<td>25</td>
<td>57</td>
<td>75</td>
<td>8</td>
<td>25,25400</td>
<td>M14</td>
<td>22</td>
<td>17000</td>
<td>24000</td>
<td>51500</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>21</td>
<td>15</td>
<td>19,3</td>
<td>42</td>
<td>22</td>
<td>27</td>
<td>64</td>
<td>85</td>
<td>8</td>
<td>28,28575</td>
<td>M16</td>
<td>22</td>
<td>21600</td>
<td>28500</td>
<td>76500</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>23</td>
<td>16,5</td>
<td>21,8</td>
<td>46</td>
<td>25</td>
<td>31</td>
<td>71</td>
<td>94</td>
<td>10</td>
<td>32,31750</td>
<td>M18x1,5</td>
<td>27</td>
<td>26000</td>
<td>40000</td>
<td>92500</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>25</td>
<td>18</td>
<td>24,3</td>
<td>50</td>
<td>27,5</td>
<td>34</td>
<td>77</td>
<td>102</td>
<td>10</td>
<td>33,34925</td>
<td>M20x1,5</td>
<td>32</td>
<td>31500</td>
<td>45000</td>
<td>104500</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>28</td>
<td>20</td>
<td>25,8</td>
<td>54</td>
<td>30</td>
<td>37</td>
<td>84</td>
<td>111</td>
<td>12</td>
<td>37,38100</td>
<td>M22x1,5</td>
<td>32</td>
<td>38000</td>
<td>52000</td>
<td>125500</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>31</td>
<td>22</td>
<td>29,6</td>
<td>60</td>
<td>33,5</td>
<td>42</td>
<td>94</td>
<td>124</td>
<td>12</td>
<td>42,42550</td>
<td>M24x2</td>
<td>36</td>
<td>47500</td>
<td>60000</td>
<td>145000</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>37</td>
<td>25</td>
<td>34,8</td>
<td>70</td>
<td>40</td>
<td>50</td>
<td>110</td>
<td>145</td>
<td>15</td>
<td>51,50500</td>
<td>M30x2</td>
<td>41</td>
<td>64000</td>
<td>81000</td>
<td>193000</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>43</td>
<td>30</td>
<td>40,3</td>
<td>80</td>
<td>49</td>
<td>60</td>
<td>125</td>
<td>165</td>
<td>20</td>
<td>56,59000</td>
<td>M36x2</td>
<td>50</td>
<td>90000</td>
<td>95000</td>
<td>210000</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>49</td>
<td>35</td>
<td>44,2</td>
<td>90</td>
<td>57</td>
<td>69</td>
<td>142</td>
<td>187</td>
<td>25</td>
<td>60,66000</td>
<td>M42x2</td>
<td>60</td>
<td>120000</td>
<td>130000</td>
<td>293000</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>60</td>
<td>45</td>
<td>55,8</td>
<td>118</td>
<td>65</td>
<td>78</td>
<td>160</td>
<td>218</td>
<td>25</td>
<td>65,82000</td>
<td>M48x2</td>
<td>65</td>
<td>190000</td>
<td>235000</td>
<td>554000</td>
<td>14</td>
</tr>
</tbody>
</table>

The sizes 2, 3 and 4 are not included in DIN ISO 12240-4.

Material
Series SFC..
Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromized to DIN 50961.
Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, 205050.31.
Inner ring: Roller bearing steel 1.3505, hardened, ground, and polished.
Series SFXC.. (available from size 5)
Outer part: Material 1.7225 tempered or similar, galvanized and chromized to DIN 50961.
Bushings: As for SFC..
Inner ring: As for SFC..
Series SFR.. (available from size 3)
Outer part: Stainless steel 1.4305, from size 16, forged.
Bushings: As for SFC..
Inner ring: As for SFC., but hard-chromed, if required stainless steel.

Design
Bearing slackness: Depending on size, between 0.01 and 0.09 mm radially. With reduced or increased slackness see page 6. Designation example SFC 10 C 2.
Thread: DIN 13 – 6 H, r.h. or 1 h. l.h. thread designation example SFL C 10. Special threads on request, see pages 16 and 17 for CETOP standard.
Lubricating nipple: Size 5–50 funnel-type DIN 3405, form D.
Stainless inner ring: From size 5 with stainless inner ring of material 1.4034 possible. Designation example SFR 10 IR.
Hard-chromed inner ring: From size 5 with hard-chromed inner ring (on bearing surface only). Designation example SFC 10 IR.
Hard-chromed outer part and inner ring: Designation example SFC 10 H.
Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 21).
Relubricatable heavy-duty rod ends with male thread
Friction pairing steel on heavy-duty bronze

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>B</th>
<th>C</th>
<th>d₁</th>
<th>d₂</th>
<th>H</th>
<th>H₁</th>
<th>Gₐ</th>
<th>K Ball dia Ø</th>
<th>Thread</th>
<th>Bearing capacities</th>
<th>Angle of misalign.</th>
<th>Weight each</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC..</td>
<td>2</td>
<td>2</td>
<td>4.8</td>
<td>3.6</td>
<td>3.6</td>
<td>9</td>
<td>18</td>
<td>22.5</td>
<td>9</td>
<td>M2</td>
<td>6000</td>
<td>6.000</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>4.5</td>
<td>5.1</td>
<td>12</td>
<td>27</td>
<td>33</td>
<td>15</td>
<td>7.937</td>
<td>M3</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>5.25</td>
<td>6.5</td>
<td>14</td>
<td>30</td>
<td>37</td>
<td>18</td>
<td>9.520</td>
<td>M4</td>
<td>2260</td>
<td>2260</td>
<td>2260</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7.7</td>
<td>18</td>
<td>33</td>
<td>42</td>
<td>20</td>
<td>11.112</td>
<td>M5</td>
<td>3250</td>
<td>3250</td>
<td>3250</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>6.75</td>
<td>8.9</td>
<td>20</td>
<td>36</td>
<td>46</td>
<td>12.700</td>
<td>M6</td>
<td>4300</td>
<td>4300</td>
<td>4300</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>10.4</td>
<td>24</td>
<td>42</td>
<td>54</td>
<td>25</td>
<td>15.875</td>
<td>M8</td>
<td>7200</td>
<td>7200</td>
<td>7200</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>10.5</td>
<td>28</td>
<td>48</td>
<td>62</td>
<td>29</td>
<td>19.050</td>
<td>M10</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>15.4</td>
<td>32</td>
<td>54</td>
<td>70</td>
<td>33</td>
<td>22.225</td>
<td>M12</td>
<td>13000</td>
<td>13000</td>
<td>13000</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>19</td>
<td>13.5</td>
<td>36</td>
<td>60</td>
<td>78</td>
<td>36</td>
<td>25.400</td>
<td>M14</td>
<td>17000</td>
<td>17000</td>
<td>17000</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>21</td>
<td>19.3</td>
<td>42</td>
<td>66</td>
<td>87</td>
<td>40</td>
<td>28.575</td>
<td>M16</td>
<td>21000</td>
<td>21000</td>
<td>21000</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td>23</td>
<td>16.5</td>
<td>48</td>
<td>72</td>
<td>95</td>
<td>44</td>
<td>31.750</td>
<td>M18x1.5</td>
<td>26000</td>
<td>26000</td>
<td>26000</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>18</td>
<td>24.3</td>
<td>50</td>
<td>78</td>
<td>47</td>
<td>34.925</td>
<td>M20x1.5</td>
<td>31500</td>
<td>31500</td>
<td>31500</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>22</td>
<td>28</td>
<td>20</td>
<td>25.8</td>
<td>54</td>
<td>84</td>
<td>51</td>
<td>38.100</td>
<td>M22x1.5</td>
<td>35000</td>
<td>35000</td>
<td>35000</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>31</td>
<td>22</td>
<td>29.6</td>
<td>60</td>
<td>94</td>
<td>57</td>
<td>42.850</td>
<td>M24x2</td>
<td>47500</td>
<td>47500</td>
<td>47500</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>37</td>
<td>25</td>
<td>34.8</td>
<td>70</td>
<td>110</td>
<td>66</td>
<td>50.800</td>
<td>M30x2</td>
<td>64000</td>
<td>64000</td>
<td>64000</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35</td>
<td>43</td>
<td>30</td>
<td>40.3</td>
<td>80</td>
<td>140</td>
<td>85</td>
<td>59.000</td>
<td>M36x2</td>
<td>90000</td>
<td>90000</td>
<td>90000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>49</td>
<td>35</td>
<td>44.2</td>
<td>90</td>
<td>150</td>
<td>90</td>
<td>60.000</td>
<td>M42x2</td>
<td>120000</td>
<td>120000</td>
<td>120000</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>45</td>
<td>55.8</td>
<td>116</td>
<td>185</td>
<td>105</td>
<td>82.000</td>
<td>M48x2</td>
<td>190000</td>
<td>190000</td>
<td>190000</td>
</tr>
</tbody>
</table>

The sizes 3 and 4 are not included in DIN ISO 12240-4.

Material

Series SMC..

Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501 galvanized and chromized to DIN 50961.
Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, 2.0550.31.
Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SMXC.. (available from size 5)

Outer part: Material 1.7225 tempered or similar, galvanized and chromized to DIN 50961.
Bushings: As for SMC.
Inner ring: As for SMC.

Series SMRC.. (available from size 3)

Outer part: Stainless steel 1.4305, from size 16 forged.
Bushings: as for SMC.
Inner ring: as for SMC., but hard-chromed, if required stainless steel.

Design

Bearing slackness: Depending on size between 0.01 and 0.09 mm radially. With reduced or increased slackness see page 6. Designation example SMC 10 C 2.

Thread: DIN 13 – 6 g, r.h. or l.h. L.h. thread designation example SML C 10. Special threads on request

Lubricating nipple: Size 6 – 50 funnel-type DIN 3405, form D

Stainless inner ring: From size 5 stainless steel inner ring of material 1.4034 possible. Designation example SMRC 10 IR.

Hard-chromed inner ring: From size 5 available with hard-chromed inner ring (on bearing surface only). Designation example SMC 10 IH.

Hard-chromed outer part and inner ring: Designation example SMC 10 H.

Sealed design: Sizes 8 – 30 can be supplied with replaceable sealing sleeves (see page 21).
Maintenance-free heavy-duty rod ends with female thread

Friction pairing steel on PTFE bronze fabric

![Diagram of a rod end with female thread]

Series SFCP..
SFXCP.. (rustproof)

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>B</th>
<th>C</th>
<th>d₁</th>
<th>d₂</th>
<th>H</th>
<th>H₁</th>
<th>H₂</th>
<th>G₁</th>
<th>K</th>
<th>Ball dia Ø</th>
<th>G</th>
<th>Thread</th>
<th>SW</th>
<th>Bearing capacities</th>
<th>Angle of misalign.</th>
<th>Weight each</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFCP..</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>5</td>
<td>6</td>
<td>21</td>
<td>10</td>
<td>7</td>
<td>3,9</td>
<td>M3</td>
<td>11</td>
<td>3</td>
<td>4,7</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>25</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>31</td>
<td>10</td>
<td>9</td>
<td>5,2</td>
<td>M4</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>0.002</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>27</td>
<td>10</td>
<td>11</td>
<td>11,1</td>
<td>M5</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>0.002</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>7,5</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>12,5</td>
<td>M6</td>
<td>11</td>
<td>3</td>
<td>7</td>
<td>0.002</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>14</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15,7</td>
<td>M8</td>
<td>14</td>
<td>3</td>
<td>8</td>
<td>0.002</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>14</td>
<td>10,5</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>18,5</td>
<td>M10</td>
<td>17</td>
<td>3</td>
<td>9</td>
<td>0.002</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>15,4</td>
<td>17</td>
<td>15</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20,5</td>
<td>M12</td>
<td>19</td>
<td>3</td>
<td>10</td>
<td>0.002</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>18</td>
<td>13,5</td>
<td>16,8</td>
<td>17,5</td>
<td>16,5</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25,4</td>
<td>M14</td>
<td>22</td>
<td>3</td>
<td>11</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>21</td>
<td>15</td>
<td>16,3</td>
<td>19,5</td>
<td>19,5</td>
<td>22</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>28,7</td>
<td>M16</td>
<td>22</td>
<td>3</td>
<td>12</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>23</td>
<td>16,5</td>
<td>18,8</td>
<td>20,5</td>
<td>20,5</td>
<td>25</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>31,7</td>
<td>M18x1,5</td>
<td>27</td>
<td>3</td>
<td>13</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>25</td>
<td>18</td>
<td>24,3</td>
<td>20,5</td>
<td>25,5</td>
<td>34</td>
<td>37</td>
<td>33</td>
<td>33</td>
<td>34,2</td>
<td>M20x1,5</td>
<td>32</td>
<td>3</td>
<td>14</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>28</td>
<td>20</td>
<td>25,8</td>
<td>34,5</td>
<td>34,5</td>
<td>37</td>
<td>38</td>
<td>37</td>
<td>37</td>
<td>38,1</td>
<td>M22x1,5</td>
<td>32</td>
<td>3</td>
<td>15</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>31</td>
<td>22</td>
<td>29,8</td>
<td>40</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42,5</td>
<td>M24x2</td>
<td>36</td>
<td>3</td>
<td>16</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>35</td>
<td>27</td>
<td>34,8</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50,8</td>
<td>M30x2</td>
<td>41</td>
<td>3</td>
<td>17</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td>30</td>
<td>40,3</td>
<td>40,5</td>
<td>40,5</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50,9</td>
<td>M36x2</td>
<td>50</td>
<td>3</td>
<td>18</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>49</td>
<td>35</td>
<td>44,2</td>
<td>44,2</td>
<td>44,2</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60,0</td>
<td>M40x2</td>
<td>60</td>
<td>3</td>
<td>19</td>
<td>0.002</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>45</td>
<td>50,8</td>
<td>50,8</td>
<td>50,8</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70,0</td>
<td>M48x2</td>
<td>65</td>
<td>3</td>
<td>20</td>
<td>0.002</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tolerance</th>
<th>H7</th>
<th>±</th>
<th>0</th>
<th>0,2</th>
<th>0,2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>14</th>
<th>6</th>
<th>0,3</th>
</tr>
</thead>
</table>

The sizes 3 and 4 are not included in DIN ISO 12240-4.

Material

Series SFCP..
Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromized to DIN 50961.

Bushings: CuSn 8/CuZn 40 Al 2 F59, galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.

Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SFXCP.. (available from size 5)
Outer part: Material 1.7225 tempered or similar, galvanized and chromized to DIN 50961.

Bushings: As for SFCP..

Inner ring: As for SFCP..

Series SFRCP.. (available from size 3)
Outer part: Stainless steel 1.4305, from size 16 forged.

B Bushings: As for SFCP., if required stainless steel.

Inner ring: As for SFCP., but hard-chromed; if required stainless steel.

Design

Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 6 for precise details. Designation example SFCP 10 C 2.

Thread: DIN 13 – 6 H, r.h. or l.h. thread designation example SFLCP 10. Special thread on request, see pages 16 and 17 for CETOP standard.

Stainless inner ring: From size 5 with stainless inner ring of material 1.4034 possible. Designation example SFRCP 10 IR.

Hard-chromed inner ring: From size 5 available with hard-chromed inner ring (on bearing surface only). Designation example SFCP 10 IH.

Hard-chromed outer part and inner ring: Designation example SFCP 10 H.

Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 21).
Maintenance-free heavy-duty rod ends with male thread

Friction pairing steel on PTFE bronze fabric

![Diagram of rod ends](image)

Series **SMCP..**

SMXCP.. (rustproof)

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>3</th>
<th>6</th>
<th>4.5</th>
<th>5.1</th>
<th>12</th>
<th>27</th>
<th>33</th>
<th>15</th>
<th>7,937</th>
<th>M3</th>
<th>4,700</th>
<th>500/500</th>
<th>--</th>
<th>15</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>5.25</td>
<td>6.5</td>
<td>14</td>
<td>30</td>
<td>37</td>
<td>18</td>
<td>9,520</td>
<td>M4</td>
<td>6,700</td>
<td>1500/900</td>
<td>--</td>
<td>14</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>7.7</td>
<td>18</td>
<td>33</td>
<td>42</td>
<td>20</td>
<td>11,112</td>
<td>M5</td>
<td>7,800</td>
<td>3,000</td>
<td>7</td>
<td>500</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>9</td>
<td>6.75</td>
<td>8.9</td>
<td>20</td>
<td>36</td>
<td>46</td>
<td>22</td>
<td>12,700</td>
<td>M6</td>
<td>10,900</td>
<td>4,000</td>
<td>10</td>
<td>500</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>12</td>
<td>9</td>
<td>10.4</td>
<td>24</td>
<td>42</td>
<td>54</td>
<td>25</td>
<td>15,875</td>
<td>M8</td>
<td>18,000</td>
<td>8,000</td>
<td>19</td>
<td>500</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>14</td>
<td>10.5</td>
<td>12.9</td>
<td>28</td>
<td>48</td>
<td>62</td>
<td>29</td>
<td>19,050</td>
<td>M10</td>
<td>27,000</td>
<td>13,000</td>
<td>30</td>
<td>500</td>
<td>13</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>15.4</td>
<td>32</td>
<td>54</td>
<td>70</td>
<td>33</td>
<td>22,225</td>
<td>M12</td>
<td>36,000</td>
<td>17,000</td>
<td>43</td>
<td>400</td>
<td>13</td>
<td>85</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>18</td>
<td>13.5</td>
<td>16.8</td>
<td>36</td>
<td>60</td>
<td>78</td>
<td>36</td>
<td>25,400</td>
<td>M14</td>
<td>48,000</td>
<td>24,000</td>
<td>51</td>
<td>500</td>
<td>15</td>
<td>125</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>21</td>
<td>19.3</td>
<td>42</td>
<td>66</td>
<td>87</td>
<td>40</td>
<td>28,575</td>
<td>M16</td>
<td>60,000</td>
<td>28,500</td>
<td>76</td>
<td>500</td>
<td>15</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>23</td>
<td>18.5</td>
<td>21.8</td>
<td>46</td>
<td>72</td>
<td>95</td>
<td>44</td>
<td>31,750</td>
<td>M18x1.5</td>
<td>74,000</td>
<td>40,000</td>
<td>92</td>
<td>500</td>
<td>15</td>
<td>265</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>25</td>
<td>18</td>
<td>24.3</td>
<td>50</td>
<td>78</td>
<td>103</td>
<td>47</td>
<td>34,925</td>
<td>M20x1.5</td>
<td>90,000</td>
<td>45,000</td>
<td>104</td>
<td>500</td>
<td>15</td>
<td>350</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>28</td>
<td>20</td>
<td>25.8</td>
<td>54</td>
<td>84</td>
<td>111</td>
<td>51</td>
<td>38,100</td>
<td>M22x1.5</td>
<td>110,000</td>
<td>52,000</td>
<td>125</td>
<td>500</td>
<td>15</td>
<td>450</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>31</td>
<td>22</td>
<td>29.6</td>
<td>60</td>
<td>94</td>
<td>124</td>
<td>57</td>
<td>42,850</td>
<td>M24x2</td>
<td>136,000</td>
<td>60,000</td>
<td>148</td>
<td>500</td>
<td>15</td>
<td>610</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>37</td>
<td>25</td>
<td>34.8</td>
<td>70</td>
<td>110</td>
<td>145</td>
<td>68</td>
<td>50,800</td>
<td>M30x2</td>
<td>186,000</td>
<td>81,000</td>
<td>193</td>
<td>500</td>
<td>15</td>
<td>1090</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>43</td>
<td>30</td>
<td>40.3</td>
<td>80</td>
<td>140</td>
<td>180</td>
<td>85</td>
<td>59,000</td>
<td>M36x2</td>
<td>264,000</td>
<td>95,000</td>
<td>210</td>
<td>500</td>
<td>15</td>
<td>1650</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>49</td>
<td>35</td>
<td>44.2</td>
<td>90</td>
<td>190</td>
<td>215</td>
<td>90</td>
<td>66,000</td>
<td>M42x2</td>
<td>348,000</td>
<td>130,000</td>
<td>283</td>
<td>500</td>
<td>15</td>
<td>2300</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>60</td>
<td>45</td>
<td>55.8</td>
<td>116</td>
<td>185</td>
<td>243</td>
<td>105</td>
<td>82,000</td>
<td>M48x2</td>
<td>550,000</td>
<td>235,000</td>
<td>554</td>
<td>500</td>
<td>14</td>
<td>4800</td>
</tr>
</tbody>
</table>

The sizes 3 and 4 are not included in DIN ISO 12240-4.

Material

Series SMCP..

Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromized to DIN 50961.

Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59 galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.

Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SMXCP.. (available from size 5)

Outer part: Material 1.7225 tempered or similar, galvanized and chromized to DIN 50961.

Bushings: As for SMCP.

Inner ring: As for SMCP.

Series SMRCP.. (available from size 3)

Outer part: Stainless steel 1.4305, from size 16 forged.

Bushings: As for SMCP., if required stainless steel.

Inner ring: As for SMCP.. but hard-chromed, if required stainless steel.

Design

Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 6 for precise details.

Designation example SMCP 10 C 2.

Thread: DIN 13 – 6 g, r.h. or I.H. Lh. designation example SMLCP 10. Special thread on request.

Stainless inner ring: From size 5 with stainless steel inner ring of material 1.4034 possible.

Designation example SMRCP 10 IR.

Hard-chromed inner ring: From size 5 available with hard-chromed inner ring (on bearing surface only).

Designation example SMCP 10 IH.

Hard-chromed outer part and inner ring:

Designation example SMCP 10 H.

Sealed design: Sizes 8 – 30 can be supplied with replaceable sealing sleeves (see page 21).
Relubricatable heavy-duty rod ends for pneumatic cylinders
Friction pairing steel on heavy duty bronze - Mounting dimensions: CETOP

Series SFC...CETOP

Series	d	B	C	d₁	d₂	d₃	d₄	H₁	H₂	G₁	K	G	SW	Bearing capacities	Angle of	Weight				
--------	----	----	----	----	----	----	----	----	----	----	----	----	----	dynamic C	static C	misalign.	each			
SFC...	5	5	8	6	7.7	18	9	11	27	36	4	10	11.12	M4	9	3250	6000	15000	13	17
	6*																			
	8*																			
	10	10	14	10.5	12.9	28	15	19	43	57	6.5	20	19.050	M10x1.25	17	10000	14500	35500	13	75
	12	12	16	12	15.4	32	17.5	22	50	66	6.5	22	22.225	M12x1.25	19	13400	17000	43000	13	110
	16	16	21	15	19.3	42	22	27	64	85	8	28	28.575	M16x1.5	22	21600	28500	76500	15	210
	20*																			
	25*																			
	30	30	37	25	34.8	70	40	50	110	145	15	51	50,800	M27x2	41	64000	81000	193000	15	1130
	35*																			
	40*																			
	50*																			
Tolerance	H7	0	0.2	--	--	--	--	--	--	--	1.0	--	--	DIN 13	0	0.3	--	--	--	--

*Sizes 6, 8, 20, 25 and 35 to 50 correspond to the rod ends on page 12.

**Safety factor Co see page 7

Material
Series SFC...CETOP
Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromalized to DIN 50961.
Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, 2.0550.31.
Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.

Series SFXC...CETOP
Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50961.
Bushings: As for SFC.
Inner ring: As for SFC.

Series SFRC...CETOP
Outer part: Stainless steel 1.4305, from size 16 forged.
Bushings: As for SFC.
Inner ring: As for SFC..., but hard-chromed; if required stainless steel.

Design
Bearing slackness: Depending on size, between 0.002 and 0.090 mm radially. With reduced or increased slackness see page 6. Designation example SFC 10 C 2 CETOP.
Thread: DIN 13 - 6 H, r.h. or l.h. thread designation example SFL C 10 CETOP.
Lubricating nipple: Sizes 5–50 funnel-type DIN 3405, form D.
Stainless inner ring: From size 5 stainless steel inner ring of material 1.4034 possible. Designation example SFRC 10 IR CETOP.
Hard-chromed inner ring: From size 5 available with hard-chromed inner ring (on bearing surface only). Designation example SFC 10 IH CETOP.
Hard-chromed outer part and inner ring:
Designation example SFC 10 H CETOP.
Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 21).
Maintenance-free heavy-duty rod ends for pneumatic cylinders
Friction pairing steel on PTFE bronze fabric Mounting dimensions: CETOP

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>B</th>
<th>C</th>
<th>d₁</th>
<th>d₂</th>
<th>d₃</th>
<th>d₄</th>
<th>H₁</th>
<th>H₂</th>
<th>H₃</th>
<th>G₁</th>
<th>K</th>
<th>G Thread</th>
<th>SW</th>
<th>Bearing capacities</th>
<th>Angle of misalign. each</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFCP</td>
<td></td>
<td>dynamic C</td>
<td>static C, **misalign. each</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>7.7</td>
<td>18</td>
<td>11</td>
<td>27</td>
<td>36</td>
<td>4</td>
<td>10</td>
<td>11.112</td>
<td>M4</td>
<td>9</td>
<td>7 800</td>
<td>6 000</td>
<td>15 000</td>
</tr>
<tr>
<td></td>
<td>6*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8*</td>
<td>10</td>
<td>14</td>
<td>10.5</td>
<td>12.9</td>
<td>28</td>
<td>15</td>
<td>19</td>
<td>43</td>
<td>57</td>
<td>6.5</td>
<td>20</td>
<td>19.050</td>
<td>M10xL1.25</td>
<td>17</td>
<td>27 000</td>
<td>14 500</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>15.4</td>
<td>32</td>
<td>17.5</td>
<td>22</td>
<td>50</td>
<td>66</td>
<td>6.5</td>
<td>22</td>
<td>22.225</td>
<td>M12xL1.25</td>
<td>19</td>
<td>36 000</td>
<td>17 000</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>21</td>
<td>15</td>
<td>19.3</td>
<td>42</td>
<td>22</td>
<td>27</td>
<td>64</td>
<td>85</td>
<td>8</td>
<td>28</td>
<td>28.575</td>
<td>M16xL1.5</td>
<td>22</td>
<td>60 000</td>
<td>28 500</td>
</tr>
<tr>
<td></td>
<td>20*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>37</td>
<td>25</td>
<td>34.8</td>
<td>70</td>
<td>40</td>
<td>50</td>
<td>110</td>
<td>145</td>
<td>15</td>
<td>51</td>
<td>50,800</td>
<td>M27x2</td>
<td>41</td>
<td>186 000</td>
<td>81 000</td>
</tr>
<tr>
<td></td>
<td>35*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50*</td>
<td></td>
</tr>
<tr>
<td>Tolerance ±</td>
<td>H7</td>
<td>0.2</td>
<td>0.12</td>
<td>0.2</td>
<td></td>
<td>DIN 13</td>
<td>6 H</td>
<td>0</td>
</tr>
</tbody>
</table>

*Sizes 6, 8, 20, 25 and 35 to 50 correspond to the rod ends on page 14.

Material
Series SFCP...CETOP
Outer part: Up to size 14 free-cutting steel 1.0718, from size 16 material 1.0501, galvanized and chromalized to DIN 50961.
Bushings: Cu Sn 8/Cu Zn 40 Al 2 F59, galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.
Inner ring: Roller bearing steel 1.3505, hardened, ground and polished.
Series SFXCP...CETOP
Outer part: Material 1.7225 tempered or similar, galvanized and chromalized to DIN 50961.
Bushings: As for SFCP.
Inner ring: As for SFCP.
Series SFRCP...CETOP
Outer part: Stainless steel 1.4305, from size 16 forged.
Bushings: As for SFCP., if required stainless steel.
Inner ring: As for SFCP, but hard-chromed; if required stainless steel.

Design
Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 6 for precise details. Designation example SFC 10 C 2 CETOP.
Thread: DIN 13 – 6 H (h), or I.H. Lh. thread designation example SFL CP 10 CETOP.
Stainless inner ring: From size 5 with stainless steel inner ring of material 1.4034 possible. Designation example SFRCP 10 IR CETOP.
Hard-chromed inner ring: From size 5 available with hard-chromed inner ring (on bearing surface only). Designation example SFC 10 IH CETOP.
Hard-chromed outer part and inner ring: Designation example SFC 10 H CETOP.
Sealed design: Sizes 8 – 30 can be supplied with replaceable sealing sleeves (see page 21).
Relubricatable heavy-duty spherical bearings
Friction pairing steel on heavy-duty bronze

Series **SSC..**
SSRC.. (rustproof)

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>D</th>
<th>B</th>
<th>C</th>
<th>d₁</th>
<th>K</th>
<th>Bearing capacities</th>
<th>Angle of misalign.</th>
<th>Weight each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dynamic C</td>
<td>static Co*</td>
<td>α°</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9</td>
<td>4,8</td>
<td>3,6</td>
<td>3,6</td>
<td>6,000</td>
<td>900</td>
<td>2 450</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>4,5</td>
<td>5,2</td>
<td>7,937</td>
<td>1 500</td>
<td>4 200</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>14</td>
<td>7</td>
<td>5,25</td>
<td>6,4</td>
<td>9,520</td>
<td>2 260</td>
<td>5 900</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>16</td>
<td>8</td>
<td>6</td>
<td>7,7</td>
<td>11,112</td>
<td>3 250</td>
<td>19 000</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td>9</td>
<td>6,75</td>
<td>8,9</td>
<td>12,700</td>
<td>4 300</td>
<td>25 000</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>19</td>
<td>12</td>
<td>9</td>
<td>10,4</td>
<td>15,875</td>
<td>7 200</td>
<td>41 000</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>20</td>
<td>14</td>
<td>10,5</td>
<td>12,9</td>
<td>19,050</td>
<td>10 000</td>
<td>58 000</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>30</td>
<td>16</td>
<td>12</td>
<td>15,4</td>
<td>22,225</td>
<td>13 400</td>
<td>78 000</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>34</td>
<td>19</td>
<td>13,5</td>
<td>16,8</td>
<td>25,400</td>
<td>17 000</td>
<td>100 000</td>
<td>15</td>
<td>110</td>
</tr>
<tr>
<td>16</td>
<td>38</td>
<td>21</td>
<td>15</td>
<td>19,3</td>
<td>28,575</td>
<td>21 600</td>
<td>125 000</td>
<td>15</td>
<td>130</td>
</tr>
<tr>
<td>18</td>
<td>42</td>
<td>23</td>
<td>16,5</td>
<td>21,8</td>
<td>31,750</td>
<td>26 000</td>
<td>155 000</td>
<td>15</td>
<td>170</td>
</tr>
<tr>
<td>20</td>
<td>46</td>
<td>25</td>
<td>18</td>
<td>24,3</td>
<td>34,925</td>
<td>31 500</td>
<td>186 000</td>
<td>15</td>
<td>230</td>
</tr>
<tr>
<td>22</td>
<td>50</td>
<td>28</td>
<td>20</td>
<td>25,8</td>
<td>38,100</td>
<td>38 000</td>
<td>228 000</td>
<td>15</td>
<td>280</td>
</tr>
<tr>
<td>25</td>
<td>56</td>
<td>31</td>
<td>22</td>
<td>29,6</td>
<td>42,850</td>
<td>48 500</td>
<td>284 000</td>
<td>15</td>
<td>390</td>
</tr>
<tr>
<td>30</td>
<td>66</td>
<td>37</td>
<td>25</td>
<td>34,8</td>
<td>50,800</td>
<td>64 000</td>
<td>384 000</td>
<td>15</td>
<td>620</td>
</tr>
<tr>
<td>35</td>
<td>78</td>
<td>43</td>
<td>30</td>
<td>40,3</td>
<td>59,000</td>
<td>90 000</td>
<td>510 000</td>
<td>16</td>
<td>850</td>
</tr>
<tr>
<td>40</td>
<td>87</td>
<td>49</td>
<td>35</td>
<td>44,2</td>
<td>66,000</td>
<td>120 000</td>
<td>675 000</td>
<td>15</td>
<td>1420</td>
</tr>
<tr>
<td>50</td>
<td>108</td>
<td>60</td>
<td>45</td>
<td>55,8</td>
<td>82,000</td>
<td>190 000</td>
<td>1 100 000</td>
<td>14</td>
<td>2630</td>
</tr>
</tbody>
</table>

Tolerance: H7 H8 H8++ 0 0.12 0.2

Sizes 2, 3, 4 will be delivered without oil groove.

*Security factor Co see page 7

Material

Series SSC..

- **Outer part:** Free-cutting steel 1.0718, browned.
- **Bushings:** Cu Sn 8/Cu Zn 40 Al 2 F 59.
- **Inner ring:** Roller bearing steel 100 Cr 6, material 1.3505, hardened, ground and polished.

Series SSRC.. (available from size 5)

- **Outer part:** Stainless steel, material 1.4305.
- **Bushings:** As for SSC..
- **Inner ring:** As for SSC.. but hard-chromed, if required stainless steel.

Design

- **Bearing slackness:** Depending on size, between 0.01 and 0.09 mm radially. With reduced or increased slackness see page 6. Designation example SSC 10 C 2.
- **Lubrication:** Through an annular lubrication groove on the outer ring.
- **Stainless inner ring:** From size 5 stainless steel inner ring of material 1.4034 possible. Designation example SSRC 10 IR.
- **Hard-chromed inner ring:** From size 5 available with hard-chromed inner ring. Designation example SSC 10 IH.
- **Sealed design:** Sizes 8~30 can be supplied with replaceable sealing sleeves (see page 21).
Maintenance-free heavy-duty spherical bearings
Friction pairing steel on PTFE bronze fabric

![Diagram of spherical bearing with dimensions](image)

Series SSCP..
SSRPC.. (rustproof)

Material
Series SSCP..
- **Outer part:** Free-cutting steel 1.0718, browned.
- **Bushings:** Cu Sn 8/Cu Zn 40 Al 2 F59 galvanized, lined with permanently affixed sliding foil, consisting of PTFE with a bronze supporting fabric.
- **Inner ring:** Roller bearing steel 100 Cr 6, material 1.3505, hardened, ground and polished.

Series SSRPC.. (available from size 5)
- **Outer part:** Stainless steel, material 1.4305.
- **Bushings:** As for SSCP,, if required stainless steel.
- **Inner ring:** As for SSCP. but hard-chromed, if required stainless steel.

Design
Bearing slackness: Depending on size, between 0.002 and 0.020 mm radially. See page 6 for precise details.
Designation example SSCP 10 C 2.
Stainless inner ring: From size 5 stainless steel inner ring of material 1.4034 possible.
Designation example SSCP 10 IR.
Hard-chromed inner ring: From size 5 available with hard-chromed inner ring.
Designation example SSCP 10 IH.
Sealed design: Sizes 8–30 can be supplied with replaceable sealing sleeves (see page 21).

Table
<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>D</th>
<th>B</th>
<th>C</th>
<th>d₁</th>
<th>K</th>
<th>Bearing capacities</th>
<th>Angle of misalign.</th>
<th>Weight each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>α°</td>
<td>²</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSCP..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ball dia. Φ</td>
<td>dynamic C</td>
<td>static C+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,700</td>
<td>7,300</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>4,5</td>
<td>5,2</td>
<td>7,937</td>
<td>7,300</td>
<td>4,700</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>14</td>
<td>7</td>
<td>5,25</td>
<td>6,4</td>
<td>9,520</td>
<td>11,000</td>
<td>6,700</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16</td>
<td>8</td>
<td>6</td>
<td>7,7</td>
<td>11,112</td>
<td>15,000</td>
<td>7,800</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>18</td>
<td>9</td>
<td>6,75</td>
<td>8,9</td>
<td>12,700</td>
<td>21,000</td>
<td>10,900</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>22</td>
<td>12</td>
<td>9</td>
<td>10,4</td>
<td>15,875</td>
<td>36,000</td>
<td>18,000</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>26</td>
<td>14</td>
<td>10,5</td>
<td>12,9</td>
<td>19,050</td>
<td>53,000</td>
<td>27,000</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>30</td>
<td>16</td>
<td>12</td>
<td>15,4</td>
<td>22,225</td>
<td>71,000</td>
<td>36,000</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>34</td>
<td>19</td>
<td>13,5</td>
<td>16,8</td>
<td>25,400</td>
<td>93,000</td>
<td>48,000</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>38</td>
<td>21</td>
<td>15</td>
<td>19,3</td>
<td>28,575</td>
<td>116,000</td>
<td>60,000</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>42</td>
<td>23</td>
<td>16,5</td>
<td>21,8</td>
<td>31,750</td>
<td>143,000</td>
<td>74,000</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>46</td>
<td>25</td>
<td>18</td>
<td>24,3</td>
<td>34,925</td>
<td>173,000</td>
<td>90,000</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>50</td>
<td>28</td>
<td>20</td>
<td>25,8</td>
<td>38,100</td>
<td>212,000</td>
<td>110,000</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>56</td>
<td>31</td>
<td>22</td>
<td>29,6</td>
<td>42,850</td>
<td>263,000</td>
<td>136,000</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>66</td>
<td>37</td>
<td>25</td>
<td>34,8</td>
<td>50,800</td>
<td>356,000</td>
<td>186,000</td>
<td>15</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>78</td>
<td>43</td>
<td>30</td>
<td>40,3</td>
<td>59,000</td>
<td>500,000</td>
<td>264,000</td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>87</td>
<td>49</td>
<td>35</td>
<td>44,2</td>
<td>66,000</td>
<td>660,000</td>
<td>348,000</td>
<td>15</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>108</td>
<td>60</td>
<td>45</td>
<td>55,8</td>
<td>82,000</td>
<td>1000,000</td>
<td>550,000</td>
<td>14</td>
</tr>
</tbody>
</table>

*Recommended housing hole M 7, see page 6
Sizes 2, 3, 4 will be delivered without oil groove.

Security factor C, see page 7
Heavy-duty spherical bearings
Friction pairing steel on heavy-duty bronze

Steel on PTFE bronze fabric
relubricatable maintenance-free

Series SC..

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>D₁</th>
<th>B</th>
<th>C</th>
<th>d₁</th>
<th>K</th>
<th>Bearing cap.</th>
<th>Angle of misalign.</th>
<th>Weight each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>250</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>16</td>
<td>9</td>
<td>6.75</td>
<td>9</td>
<td>4</td>
<td>300</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>19</td>
<td>12</td>
<td>10.4</td>
<td>15.875</td>
<td>7</td>
<td>2000</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>22</td>
<td>14</td>
<td>10.5</td>
<td>12.9</td>
<td>19.060</td>
<td>10</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>26</td>
<td>16</td>
<td>12</td>
<td>15.4</td>
<td>22.225</td>
<td>13</td>
<td>1400</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>29</td>
<td>19</td>
<td>13.5</td>
<td>16.8</td>
<td>25.400</td>
<td>17</td>
<td>1000</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>32</td>
<td>21</td>
<td>15</td>
<td>19.3</td>
<td>28.575</td>
<td>21600</td>
<td>1000</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>35</td>
<td>23</td>
<td>16.5</td>
<td>21.8</td>
<td>31.750</td>
<td>26000</td>
<td>124000</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>40</td>
<td>25</td>
<td>18</td>
<td>24.3</td>
<td>34.925</td>
<td>31500</td>
<td>150000</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>42</td>
<td>28</td>
<td>20</td>
<td>25.8</td>
<td>38.100</td>
<td>36000</td>
<td>182000</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>47</td>
<td>31</td>
<td>22</td>
<td>29.6</td>
<td>42.850</td>
<td>47500</td>
<td>227000</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>55</td>
<td>37</td>
<td>25</td>
<td>34.8</td>
<td>50.800</td>
<td>64000</td>
<td>307000</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>63</td>
<td>40</td>
<td>30</td>
<td>39.6</td>
<td>58.800</td>
<td>80000</td>
<td>420000</td>
<td>15</td>
</tr>
</tbody>
</table>

Sizes 2–4 and 35–50 are not available as spherical bearings.

Material

Series SC..
- **Outer part/bushing:** Cu Sn 8.
- **Inner ring:** Roller bearing steel 100 Cr 6, material 1.3505, hardened, ground and polished.

Series SCP..
- **Outer part/bushing:** Stainless steel material 1.4305.
- Lined and covered with sliding foil of PTFE with bronze supporting fabric.
- **Inner ring:** As for SC..

Design

- **Bearing slackness:** In the case of SC., between 0.010 and 0.090 mm depending on the size. In the case of SCP., between 0.005 and 0.010 mm depending on the size. See page 6 for precise details.
- **Stainless inner ring:** Available with stainless steel inner ring of material 1.4034.
- **Designation example SC 10 IR.**
- **Hard-chromed inner ring:** Available with hard-chromed inner ring.
- **Designation example SC 10 IH.**

Tolerance

<table>
<thead>
<tr>
<th>±</th>
<th>H7</th>
<th>h6 **</th>
<th>0</th>
<th>0.12</th>
<th>0.2</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>--</th>
</tr>
</thead>
</table>

Recommended housing hole M 7, see page 6.

Security factor Co see page 7
Sealed rod ends and spherical bearings

Dimensions

<table>
<thead>
<tr>
<th>Series</th>
<th>d</th>
<th>d₁</th>
<th>A₁</th>
<th>A₂</th>
<th>B₁</th>
<th>B₂</th>
<th>Angle of misa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>...RS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α°</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>6</td>
<td>10,5</td>
<td>18,5</td>
<td>19</td>
<td>18,5</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>8</td>
<td>12,5</td>
<td>21,5</td>
<td>21</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>10</td>
<td>14,5</td>
<td>25,5</td>
<td>23</td>
<td>22,5</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>12</td>
<td>16,5</td>
<td>29,5</td>
<td>26</td>
<td>24,5</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>32,5</td>
<td>28</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>16</td>
<td>21</td>
<td>35,5</td>
<td>30</td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>18</td>
<td>23</td>
<td>39</td>
<td>32</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>20</td>
<td>25,5</td>
<td>42,5</td>
<td>35</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>22</td>
<td>29</td>
<td>46,5</td>
<td>38</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>25</td>
<td>33,5</td>
<td>55</td>
<td>44</td>
<td>43</td>
<td>12</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sizes 2–6 and 35–50 are not available in sealed design.</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Tolerances

| Tolerance | ± | H7 | | 0 | 0,2 | |

Material

Sealing sleeve: Butadiene acrylnitrile copolymer Viton®, oil and ozone resistant, temperature resistant from −25° to +250° C.

Slip ring: Brass.

Bore bushing: Stainless steel, material 1.4305.

Viton® is a registered trademark of DuPont Performance Elastomers.

Design

The relubricatable and maintenance-free rod ends and spherical bearings of sizes 8 to 30 can be provided with replaceable sealing sleeves to protect the bearing from coarse dirt, dust and splashing water.

The elastic sealing sleeve is pulled on the outside over the specially extended and grooved bushing, and on the inside over a slip ring.

Designation example SFC 10.2 RS.
Threaded bolts for rod ends and spherical bearings

Series ..W

<table>
<thead>
<tr>
<th>Series</th>
<th>B</th>
<th>L₁</th>
<th>L₂</th>
<th>L₃</th>
<th>A</th>
<th>M</th>
<th>SW</th>
<th>Weight each (only bolts) = g</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>11</td>
<td>8</td>
<td>M 5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>10</td>
<td>5.5</td>
<td>13</td>
<td>10</td>
<td>M 6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>13</td>
<td>6.5</td>
<td>17</td>
<td>13</td>
<td>M 8</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>15</td>
<td>7</td>
<td>21</td>
<td>17</td>
<td>M 10</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>17</td>
<td>7.5</td>
<td>25</td>
<td>20</td>
<td>M 12</td>
<td>14</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>20</td>
<td>8.5</td>
<td>29</td>
<td>22</td>
<td>M 14</td>
<td>14</td>
<td>67</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>22</td>
<td>9.5</td>
<td>33</td>
<td>24</td>
<td>M 16</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>20</td>
<td>12</td>
<td>45</td>
<td>35</td>
<td>M 20</td>
<td>22</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>12</td>
<td>45</td>
<td>35</td>
<td>M 20</td>
<td>22</td>
<td>200</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sizes 2-4 and 18, 22-50 are not made in series.

Material
Stainless steel, material 1.4305, hexagon bare. Other materials such as 1.7225 browned. Special dimensions on request.

Design
All series of rod ends and spherical bearings, except the sealed ..2 RS design, can be fitted with threaded bolts and used as angle joints. The bolt is pressed and riveted into the inner ring. Designation example SF C 10 W.
Applications and typical installations
Agricultural machinery

<table>
<thead>
<tr>
<th>Bakery machines</th>
<th>Hydraulic cylinders</th>
<th>Road-building machinery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottle-washing machines</td>
<td>Knitting machines</td>
<td>Sail planes</td>
</tr>
<tr>
<td>Brick-making machines</td>
<td>Labeling machines</td>
<td>Separating equipment</td>
</tr>
<tr>
<td>Cardboard-making machines</td>
<td>Leather-working machines</td>
<td>Sewing machines</td>
</tr>
<tr>
<td>Cigarette making machines</td>
<td>Lifts</td>
<td>Signaling equipment</td>
</tr>
<tr>
<td>Construction machines</td>
<td>Machine tools</td>
<td>Snow-clearing machines</td>
</tr>
<tr>
<td>Conveying systems</td>
<td>Mining machines</td>
<td>Space industrie</td>
</tr>
<tr>
<td>Driving machinery</td>
<td>Mixing machines</td>
<td>Spinning machine</td>
</tr>
<tr>
<td>Engine building</td>
<td>Motor vehicles</td>
<td>Textile machinery</td>
</tr>
<tr>
<td>Engraving machines</td>
<td>Packaging machines</td>
<td>Water turbines</td>
</tr>
<tr>
<td>Filling machines</td>
<td>Pneumatic cylinders</td>
<td>Weighs</td>
</tr>
<tr>
<td>Gas producers</td>
<td>Power engineering</td>
<td>Welding machines</td>
</tr>
<tr>
<td>Handling machines</td>
<td>Preforming machines</td>
<td>Wine-bottling machines</td>
</tr>
<tr>
<td></td>
<td>Printing machines</td>
<td>Woodworking machines and many more</td>
</tr>
</tbody>
</table>
Form sheet for an inquiry

Please give us on this paper all the informations like measures, required design and quantities, and send this to our fax no.
+49 (0)7402/183-10

You will get the quotation immediately

To complete: Company: _______________ Contact: _______________ Tel.: __________

Tick where applicable ☒

Form:

Material Inner ring:
Material Outer ring:
Maintenance free: yes ☐ no ☐
sealed: ☐
Angle of misalignment α?:?
Quantity: ______

Material Rod End: _______________
Material Inner ring: _______________
Material Outer ring: _______________
Maintenance free: yes ☐ no ☐
sealed: ☐
Angle of misalignment α?:?
Quantity: ______
Form sheet for an inquiry

Please give us on this paper all the informations like measures, required design and quantities, and send this to our fax no.

+49 (0)7402/183-10

You will get the quotation immediately

To complete: Company: _______________ Contact: _______________ Tel.: ____________

Tick where applicable

Material outer part:
Form A: ☐
Form B: ☐
Material Inner ring: _______________
Material outer ring: _______________
maintenance free: yes ☐ no ☐
Angle of misalignment α: ___________

Quantity: ______

Material outer part:
tube: ☐ \varnothing ___________
hexagon: ☐ SW ___________
Material Inner ring: _______________
Material outer ring: _______________
maintenance free: yes ☐ no ☐
sealed: ___________
Angle of misalignment α: ___________

Quantity: ______

Material thread bar: _______________
Material Inner ring: _______________
Material outer ring: _______________
maintenance free: yes ☐ no ☐
sealed: ___________
Angle of misalignment α: ___________

Quantity: ______
Advice and sales

Through our dealers with their own stock, in:

AUSTRALIA
R. R. Fisher & Co. Ltd., P.O. Box 754, Caringbah, N.S.W. 1495,
Fon: (02) 9540-4533, Fax: (02) 9540-4079, Telex: Sterp AA 14459, sydney@rrfisher.com.au

AUSTRIA
Haberkom Ulmer GmbH, Modecenterstrasse 7, A-1030 Wien,
Fon: 01-74 074-0, Telefax: 01-74 074-13 89, christian.schuepany@haberkom.com

BELGIEN/LUXEMBURG
RAMAEKERS Transmissions s.a., Smalenberglaan 21, 2600 Hoboken (Antwerpen),
Fon: 03-8210404, Fax: 03-8210400, info@ramaekers.be

DENMARK
Herstad + Piper A/S, Jennholmen 48c, DK-2650 Hvidovre,
Fon: +45 (36) 77 40 00, Fax: +45 (36) 77 77 40, mail@herstad-piper.dk

FINLAND
KNORRING OY AB, P.O. Box 20, FIN-0038 Helsinki,
Fon: 09-5 60 41, Fax: 09-5 65 24 63, knorring@co.inet.fi

GREAT BRITAIN
MANTEK MANUFACTURING LTD., Holder Road, Aldershot Hampshire GU12 4RH
Fon: 0 12 52 34 33 35, Fax: 0 12 52 34 35 70, sales@mantek.co.uk

ISRAEL
Power Transmission Ltd., 12a Barzilay St., POB 2009, Tel Aviv,
Fon: 03-6154 49, Telefax: 03-5 60 18 54, pt@powtra.co.il

NEW ZEALAND
R. R. Fisher & Co., Ltd., 13 Spring Street, P.O.Box 23-293, Papatoetoe, Auckland,
Fon: 09-2 78 40 59, Fax: 09-2 78 82 86, sales@rrfisher.co.nz

NETHERLANDS
Kimman Technische Handelsmaatschappij B.V., Boelewerf 10–12, 2987 VD Ridderkerk-Bolnes,
Fon: 0180-46 46 88, Fax: 0180-46 59 38, info@kimman-jisk.nl

NORWAY
Merko AS, P.O. Box 63, Vågasseien, 1378 Nesbru,
Fon: 47-66 77 80 95, Fax: 47-66 77 80 93, merko@merko.no

SWEDEN
Jens S. Transmisjon AB, Box 903, Koppargatan 9, 60110 Narke, Norrköping,
Fon: 011-19 80 00, Fax: 011-19 80 50,

USA
HIRSCHMANN ENGINEERING USA, INC., 1760 Britannia Drive Unit #1,
Elgin, Illinois 60123, Fon: (847) 468-9700, Fax: (847) 468-9701,
info@hirschnannusa.com
Advice and sales

BERLIN
Weber Industrietechnik Berlin GmbH & Co. KG, Motzener Str. 19, 12277 Berlin,
Telefon: (030) 723904-0, Telefax: (030) 723904-99, info.berlin@roff-weber-gruppe.de

DUISBURG
INDUNORM Bewegungstechnik GmbH, Postfach 29 02 27, 47262 Duisburg,
Telefon: (0203) 76 91-0, Telefax: (0203) 7 69 12 91, bt@indunorm.de

GIESSEN
HIRSCHMANN-Verkaufsbüro
Michael Schmidt, Pfingstweg 4, 35305 Grünberg
Telefon: (0 64 00) 95 83 31, Telefax: (0 64 00) 95 83 32, Michael.Schmidt@hirschmanagmbh.com

HAMBURG
John & Molt GmbH, Norm-, Sonder- und Gelenkanttriebe
Biedenkamp 5e, 21509 Gladbeck,
Telefon: (0 40) 71 48 80-0, Telefax: (0 40) 71 48 80-50, info@johnmolt.de

HANNOVER
Heusinger + Salmon Mangelsdorf GmbH, Robert-Hesse-Str. 11, 30827 Garbsen,
Telefon: (0 51 1) 2 79 98-0, Telefax: (0 51 1) 2 79 98 49, Verkauf@hs-garbsen.ernks.de

HERFORD
MAT Maschinen- und Antriebstechnik Handelsgesellschaft mbH,
Lockhauser Str. 227, 32052 Herford, Telefon: (0 52 21) 76 50 50, Telefax: (0 52 21) 76 50 40
MATantriebe@teleos-web.de

STUTTGART
Ingenieurbüro Voskamp, Im Rosenhain 18, 71563 Affalterbach bei Stuttgart,
Telefon: (0 71 44) 3 71 23, Telefax: (0 71 44) 3 44 17

MÜNCHEN
HIRSCHMANN-Verkaufsbüro
Franz Protschka, Dompfaffenweg 9e, 82538 Geretsried,
Telefon: (0 81 71) 89 73, Telefax: (0 81 71) 38 76 28, Franz.Protschka@hirschmanagmbh.com
PRODUCT OVERVIEW

FIXTURING SYSTEM for Sinking and Wire EDM

FLEXIBLE AUTOMATION for machine tools

FIXTURING SYSTEM 9000 Modular Zero-Point Fixturing System

AXIAL SHAFT SEALS

Representatives, consultants and distributors in:

- Australia - Austria
- Belgium - Brazil - Bulgaria
- Canada - China - Croatia
- Czech Republic
- Denmark
- Finland - France
- Great Britain
- Hong Kong - Hungary
- India - Indonesia - Israel - Italy
- Japan - Korea - Malaysia
- Netherlands - Norway - New Zealand
- Philippines - Poland - Portugal
- Singapore - Slovakia - Slovenia
- Spain - Sweden - Switzerland
- Taiwan - Thailand - Turkey
- USA

Please ask for our catalogues.

Stainless Steel ROTARY INDEXING TABLES and A-AXES for Wire and Sinking EDM